Asymptotic Estimates for r-Whitney Numbers of the Second Kind
The r-Whitney numbers of the second kind are a generalization of all the Stirling-type numbers of the second kind which are in line with the unified generalization of Hsu and Shuie. In this paper, asymptotic formulas for r-Whitney numbers of the second kind with integer and real parameters are obtai...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Journal of Applied Mathematics |
Online Access: | http://dx.doi.org/10.1155/2014/354053 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The r-Whitney numbers of the second kind are a generalization of all the Stirling-type numbers of the second kind which are in line with the unified generalization of Hsu and Shuie. In this paper, asymptotic formulas for r-Whitney numbers of the second kind with integer and real parameters are obtained and the range of validity of each formula is established. |
---|---|
ISSN: | 1110-757X 1687-0042 |