Positive Solutions to Nonlinear Higher-Order Nonlocal Boundary Value Problems for Fractional Differential Equations

We study existence of positive solutions to nonlinear higher-order nonlocal boundary value problems corresponding to fractional differential equation of the type 𝑐𝒟𝛿0+𝑢(𝑡)+𝑓(𝑡,𝑢(𝑡))=0, 𝑡∈(0,1), 0<𝑡<1. 𝑢(1)=𝛽𝑢(𝜂)+𝜆2, 𝑢(0)=𝛼𝑢(𝜂)−𝜆1, 𝑢(0)=0, 𝑢(0)=0⋯𝑢(𝑛−1)(0)=0, where, 𝑛−1<𝛿<𝑛, 𝑛(≥3)∈ℕ,...

Full description

Saved in:
Bibliographic Details
Main Authors: Mujeeb Ur Rehman, Rahmat Ali Khan
Format: Article
Language:English
Published: Wiley 2010-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2010/501230
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study existence of positive solutions to nonlinear higher-order nonlocal boundary value problems corresponding to fractional differential equation of the type 𝑐𝒟𝛿0+𝑢(𝑡)+𝑓(𝑡,𝑢(𝑡))=0, 𝑡∈(0,1), 0<𝑡<1. 𝑢(1)=𝛽𝑢(𝜂)+𝜆2, 𝑢(0)=𝛼𝑢(𝜂)−𝜆1, 𝑢(0)=0, 𝑢(0)=0⋯𝑢(𝑛−1)(0)=0, where, 𝑛−1<𝛿<𝑛, 𝑛(≥3)∈ℕ, 0<𝜂,𝛼,𝛽<1, the boundary parameters 𝜆1,𝜆2∈ℝ+ and 𝑐𝐷𝛿0+ is the Caputo fractional derivative. We use the classical tools from functional analysis to obtain sufficient conditions for the existence and uniqueness of positive solutions to the boundary value problems. We also obtain conditions for the nonexistence of positive solutions to the problem. We include examples to show the applicability of our results.
ISSN:1085-3375
1687-0409