RBF Neural Network Backstepping Sliding Mode Adaptive Control for Dynamic Pressure Cylinder Electrohydraulic Servo Pressure System

According to the hydraulic principle diagram of the subgrade test device, the dynamic pressure cylinder electrohydraulic servo pressure system math model and AMESim simulation model are established. The system is divided into two parts of the dynamic pressure cylinder displacement subsystem and the...

Full description

Saved in:
Bibliographic Details
Main Authors: Pan Deng, Liangcai Zeng, Yang Liu
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2018/4159639
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:According to the hydraulic principle diagram of the subgrade test device, the dynamic pressure cylinder electrohydraulic servo pressure system math model and AMESim simulation model are established. The system is divided into two parts of the dynamic pressure cylinder displacement subsystem and the dynamic pressure cylinder output pressure subsystem. On this basis, a RBF neural network backstepping sliding mode adaptive control algorithm is designed: using the double sliding mode structure, the two RBF neural networks are used to approximate the uncertainties in the two subsystems, provide design methods of RBF sliding mode adaptive controller of the dynamic pressure cylinder displacement subsystem and RBF backstepping sliding mode adaptive controller of the dynamic pressure cylinder output pressure subsystem, and give the two RBF neural network weight vector adaptive laws, and the stability of the algorithm is proved. Finally, the algorithm is applied to the dynamic pressure cylinder electrohydraulic servo pressure system AMESim model; simulation results show that this algorithm can not only effectively estimate the system uncertainties, but also achieve accurate tracking of the target variables and have a simpler structure, better control performance, and better robust performance than the backstepping sliding mode adaptive control (BSAC).
ISSN:1076-2787
1099-0526