Retinal Fundus Image Registration via Vascular Structure Graph Matching

Motivated by the observation that a retinal fundus image may contain some unique geometric structures within its vascular trees which can be utilized for feature matching, in this paper, we proposed a graph-based registration framework called GM-ICP to align pairwise retinal images. First, the retin...

Full description

Saved in:
Bibliographic Details
Main Authors: Kexin Deng, Jie Tian, Jian Zheng, Xing Zhang, Xiaoqian Dai, Min Xu
Format: Article
Language:English
Published: Wiley 2010-01-01
Series:International Journal of Biomedical Imaging
Online Access:http://dx.doi.org/10.1155/2010/906067
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Motivated by the observation that a retinal fundus image may contain some unique geometric structures within its vascular trees which can be utilized for feature matching, in this paper, we proposed a graph-based registration framework called GM-ICP to align pairwise retinal images. First, the retinal vessels are automatically detected and represented as vascular structure graphs. A graph matching is then performed to find global correspondences between vascular bifurcations. Finally, a revised ICP algorithm incorporating with quadratic transformation model is used at fine level to register vessel shape models. In order to eliminate the incorrect matches from global correspondence set obtained via graph matching, we proposed a structure-based sample consensus (STRUCT-SAC) algorithm. The advantages of our approach are threefold: (1) global optimum solution can be achieved with graph matching; (2) our method is invariant to linear geometric transformations; and (3) heavy local feature descriptors are not required. The effectiveness of our method is demonstrated by the experiments with 48 pairs retinal images collected from clinical patients.
ISSN:1687-4188
1687-4196