Personal Identification Using Embedded Raspberry Pi-Based Face Recognition Systems

Facial recognition technology has significantly advanced in recent years, with promising applications in fields ranging from security to consumer electronics. Its importance extends beyond convenience, offering enhanced security measures for sensitive areas and seamless user experiences in everyday...

Full description

Saved in:
Bibliographic Details
Main Authors: Sebastian Pecolt, Andrzej Błażejewski, Tomasz Królikowski, Igor Maciejewski, Kacper Gierula, Sebastian Glowinski
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/2/887
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Facial recognition technology has significantly advanced in recent years, with promising applications in fields ranging from security to consumer electronics. Its importance extends beyond convenience, offering enhanced security measures for sensitive areas and seamless user experiences in everyday devices. This study focuses on the development and validation of a facial recognition system utilizing a Haar cascade classifier and the AdaBoost machine learning algorithm. The system leverages characteristic facial features—distinct, measurable attributes used to identify and differentiate faces within images. A biometric facial recognition system was implemented on a Raspberry Pi microcomputer, capable of detecting and identifying faces using a self-contained reference image database. Verification involved selecting the similarity threshold, a critical factor influencing the balance between accuracy, security, and user experience in biometric systems. Testing under various environmental conditions, facial expressions, and user demographics confirmed the system’s accuracy and efficiency, achieving an average recognition time of 10.5 s under different lighting conditions, such as daylight, artificial light, and low-light scenarios. It is shown that the system’s accuracy and scalability can be enhanced through testing with larger databases, hardware upgrades like higher-resolution cameras, and advanced deep learning algorithms to address challenges such as extreme facial angles. Threshold optimization tests with six male participants revealed a value that effectively balances accuracy and efficiency. While the system performed effectively under controlled conditions, challenges such as biometric similarities and vulnerabilities to spoofing with printed photos underscore the need for additional security measures, such as thermal imaging. Potential applications include access control, surveillance, and statistical data collection, highlighting the system’s versatility and relevance.
ISSN:2076-3417