Numerical Simulation of a Partly Filled Rectangular Tank with Fuel Oil

Sloshing refers to a certain kind of fluid movement that changes as it progresses. It possesses properties that are both nonlinear and exceedingly unpredictable, and these properties affect the tank wall. This effect may lead to structural wear, which in turn can cause the tank to fail. Benzene and...

Full description

Saved in:
Bibliographic Details
Main Authors: Farhan Lafta Rashid, Emad Qasem Hussein, Mudhar A. Al-Obaidi, Awesar A. Hussain
Format: Article
Language:English
Published: middle technical university 2023-09-01
Series:Journal of Techniques
Subjects:
Online Access:https://journal.mtu.edu.iq/index.php/MTU/article/view/1465
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sloshing refers to a certain kind of fluid movement that changes as it progresses. It possesses properties that are both nonlinear and exceedingly unpredictable, and these properties affect the tank wall. This effect may lead to structural wear, which in turn can cause the tank to fail. Benzene and gasoil liquids are used to test the effect of sloshing liquid and accompanying pressure on the wall tank caused by the baffles in partially full fluid tanks. To attain this, modeling of the interaction between fluid and structure is justified using the finite element analysis while the ANSYS Fluent is used to do the simulation. Specifically, the analysis enables us to anticipate the pressure that is being exerted on the shield, the influence of sloshing on the grounding point forces, and the size of the sloshing waves. The pressure distribution over time indicates a reduction of pressure on the tank wall as a result of utilising a vertical baffle if compared to the case of a tank wall without a baffle. The usage of vertical shields allows for around 20% of the greatest contact energy to be deflected, which is attributed to the potential of generating turbulence and vortices by the baffle.
ISSN:1818-653X
2708-8383