Some Nonlinear Fractional PDEs Involving β-Derivative by Using Rational exp−Ωη-Expansion Method
In this article, some new nonlinear fractional partial differential equations (PDEs) (the space-time fractional order Boussinesq equation; the space-time (2 + 1)-dimensional breaking soliton equations; and the space-time fractional order SRLW equation) have been considered, in which the treatment of...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2020/9179826 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article, some new nonlinear fractional partial differential equations (PDEs) (the space-time fractional order Boussinesq equation; the space-time (2 + 1)-dimensional breaking soliton equations; and the space-time fractional order SRLW equation) have been considered, in which the treatment of these equations in the diverse applications are described. Also, the fractional derivatives in the sense of β-derivative are defined. Some fractional PDEs will convert to consider ordinary differential equations (ODEs) with the help of transformation β-derivative. These equations are analyzed utilizing an integration scheme, namely, the rational exp−Ωη-expansion method. Different kinds of traveling wave solutions such as solitary, topological, dark soliton, periodic, kink, and rational are obtained as a by product of this scheme. Finally, the existence of the solutions for the constraint conditions is also shown. The outcome indicates that some fractional PDEs are used as a growing finding in the engineering sciences, mathematical physics, and so on. |
---|---|
ISSN: | 1076-2787 1099-0526 |