A Vehicle Path Planning Algorithm: QDDG-RRT

Autonomous vehicles require highly reliable collision-free capabilities, necessitating extensive research in path planning. Path planning determines an optimal path, crucial for safe and efficient driving. The Rapidly-exploring Random Tree (RRT) algorithm, while widely used, suffers from slow search...

Full description

Saved in:
Bibliographic Details
Main Authors: Ruixin Zhang, Qing Xu, Kai Sun, Yi Liu, Ximming Zhu, Guo Zhang, Xiang Cheng
Format: Article
Language:English
Published: IEEE 2025-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/11007093/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849689616864509952
author Ruixin Zhang
Qing Xu
Kai Sun
Yi Liu
Ximming Zhu
Guo Zhang
Xiang Cheng
author_facet Ruixin Zhang
Qing Xu
Kai Sun
Yi Liu
Ximming Zhu
Guo Zhang
Xiang Cheng
author_sort Ruixin Zhang
collection DOAJ
description Autonomous vehicles require highly reliable collision-free capabilities, necessitating extensive research in path planning. Path planning determines an optimal path, crucial for safe and efficient driving. The Rapidly-exploring Random Tree (RRT) algorithm, while widely used, suffers from slow search speeds, numerous inflection points, and redundant operations. To address these issues, We propose a global path planning algorithm: Quick Dynamic Directional Guidance-RRT (QDDG-RRT) algorithm. Key improvements include dynamically constraining the search space using a direction guidance strategy, employing steering techniques to avoid obstacles, optimizing path length to minimize global cost, and refining trajectories using second-order Bessel curves. Simulation experiments compare QDDG-RRT with P-RRT(Probabilistic Rapidly-exploring Random Tree), P-RRT*, APF(Artificial Potential Field), and A* algorithms. Results show that QDDG-RRT outperforms others in execution speed, path length, and smoothness, effectively avoiding obstacles and maintaining safe distances in complex environments.
format Article
id doaj-art-73cadb79f1154b3daddf0237e6d0f81e
institution DOAJ
issn 2169-3536
language English
publishDate 2025-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj-art-73cadb79f1154b3daddf0237e6d0f81e2025-08-20T03:21:33ZengIEEEIEEE Access2169-35362025-01-0113902129022210.1109/ACCESS.2025.357145311007093A Vehicle Path Planning Algorithm: QDDG-RRTRuixin Zhang0https://orcid.org/0009-0000-4622-4462Qing Xu1Kai Sun2https://orcid.org/0009-0007-6983-6112Yi Liu3https://orcid.org/0009-0005-7726-9811Ximming Zhu4https://orcid.org/0009-0002-6061-9393Guo Zhang5https://orcid.org/0000-0002-3987-5336Xiang Cheng6Geospatial Information Institute, Information Engineering University, Zhengzhou, ChinaGeospatial Information Institute, Information Engineering University, Zhengzhou, ChinaGeospatial Information Institute, Information Engineering University, Zhengzhou, ChinaGeospatial Information Institute, Information Engineering University, Zhengzhou, ChinaGeospatial Information Institute, Information Engineering University, Zhengzhou, ChinaState Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, ChinaUnit 66069, Luoyang, ChinaAutonomous vehicles require highly reliable collision-free capabilities, necessitating extensive research in path planning. Path planning determines an optimal path, crucial for safe and efficient driving. The Rapidly-exploring Random Tree (RRT) algorithm, while widely used, suffers from slow search speeds, numerous inflection points, and redundant operations. To address these issues, We propose a global path planning algorithm: Quick Dynamic Directional Guidance-RRT (QDDG-RRT) algorithm. Key improvements include dynamically constraining the search space using a direction guidance strategy, employing steering techniques to avoid obstacles, optimizing path length to minimize global cost, and refining trajectories using second-order Bessel curves. Simulation experiments compare QDDG-RRT with P-RRT(Probabilistic Rapidly-exploring Random Tree), P-RRT*, APF(Artificial Potential Field), and A* algorithms. Results show that QDDG-RRT outperforms others in execution speed, path length, and smoothness, effectively avoiding obstacles and maintaining safe distances in complex environments.https://ieeexplore.ieee.org/document/11007093/RRTdirection guidedirectional rotationpath cost minimizationBessel curve
spellingShingle Ruixin Zhang
Qing Xu
Kai Sun
Yi Liu
Ximming Zhu
Guo Zhang
Xiang Cheng
A Vehicle Path Planning Algorithm: QDDG-RRT
IEEE Access
RRT
direction guide
directional rotation
path cost minimization
Bessel curve
title A Vehicle Path Planning Algorithm: QDDG-RRT
title_full A Vehicle Path Planning Algorithm: QDDG-RRT
title_fullStr A Vehicle Path Planning Algorithm: QDDG-RRT
title_full_unstemmed A Vehicle Path Planning Algorithm: QDDG-RRT
title_short A Vehicle Path Planning Algorithm: QDDG-RRT
title_sort vehicle path planning algorithm qddg rrt
topic RRT
direction guide
directional rotation
path cost minimization
Bessel curve
url https://ieeexplore.ieee.org/document/11007093/
work_keys_str_mv AT ruixinzhang avehiclepathplanningalgorithmqddgrrt
AT qingxu avehiclepathplanningalgorithmqddgrrt
AT kaisun avehiclepathplanningalgorithmqddgrrt
AT yiliu avehiclepathplanningalgorithmqddgrrt
AT ximmingzhu avehiclepathplanningalgorithmqddgrrt
AT guozhang avehiclepathplanningalgorithmqddgrrt
AT xiangcheng avehiclepathplanningalgorithmqddgrrt
AT ruixinzhang vehiclepathplanningalgorithmqddgrrt
AT qingxu vehiclepathplanningalgorithmqddgrrt
AT kaisun vehiclepathplanningalgorithmqddgrrt
AT yiliu vehiclepathplanningalgorithmqddgrrt
AT ximmingzhu vehiclepathplanningalgorithmqddgrrt
AT guozhang vehiclepathplanningalgorithmqddgrrt
AT xiangcheng vehiclepathplanningalgorithmqddgrrt