Restrictive metric regularity and generalized differential calculus in Banach spaces

We consider nonlinear mappings f:X→Y between Banach spaces and study the notion of restrictive metric regularity of f around some point x¯, that is, metric regularity of f from X into the metric space E=f(X). Some sufficient as well as necessary and sufficient conditions for restrictive metric reg...

Full description

Saved in:
Bibliographic Details
Main Authors: Boris S. Mordukhovich, Bingwu Wang
Format: Article
Language:English
Published: Wiley 2004-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171204405183
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider nonlinear mappings f:X→Y between Banach spaces and study the notion of restrictive metric regularity of f around some point x¯, that is, metric regularity of f from X into the metric space E=f(X). Some sufficient as well as necessary and sufficient conditions for restrictive metric regularity are obtained, which particularly include an extension of the classical Lyusternik-Graves theorem in the case when f is strictly differentiable at x¯ but its strict derivative ∇f(x¯) is not surjective. We develop applications of the results obtained and some other techniques in variational analysis to generalized differential calculus involving normal cones to nonsmooth and nonconvex sets, coderivatives of set-valued mappings, as well as first-order and second-order subdifferentials of extended real-valued functions.
ISSN:0161-1712
1687-0425