Real-Time Intelligent Recognition and Precise Drilling in Strongly Heterogeneous Formations Based on Multi-Parameter Logging While Drilling and Drilling Engineering
Facing engineering challenges of real-time and high-precision recognition of strongly heterogeneous formations during directional drilling, it is crucial to address the issues of sparse lithology geological labels and multi-source lithology identification from LWD data. This paper proposes a real-ti...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/10/5536 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Facing engineering challenges of real-time and high-precision recognition of strongly heterogeneous formations during directional drilling, it is crucial to address the issues of sparse lithology geological labels and multi-source lithology identification from LWD data. This paper proposes a real-time intelligent recognition method for strongly heterogeneous formations based on multi-parameter logging while drilling and drilling engineering, which can effectively guide directional drilling operations. Traditional supervised learning methods rely heavily on extensive lithology labels and rich wireline logging data. However, in LWD applications, challenges such as limited sample sizes and stringent real-time requirements make it difficult to achieve the accuracy needed for effective geosteering in strongly heterogeneous reservoirs, thereby impacting the reservoir penetration rate. In this study, we comprehensively utilize LWD parameters (six types, including natural gamma and electrical resistivity, etc.) and drilling engineering parameters (four types, including drilling rate and weight on bit, etc.) from offset wells. The UMAP algorithm is employed for nonlinear dimensionality reduction, which not only integrates the dynamic response characteristics of drilling parameters but also preserves the sensitivity of logging data to lithological variations. The K-means clustering algorithm is employed to extract the deep geo-engineering characteristics from multi-source LWD data, thereby constructing a lithology label library and categorizing the training and testing datasets. The optimized CatBoost machine learning model is subsequently utilized for lithology classification, enabling real-time and high-precision geological evaluation during directional drilling. In the Hugin Formation of the Volve field in the Norwegian North Sea, the application of UMAP demonstrates superior data separability compared with PCA and t-SNE, effectively distinguishing thin reservoirs with strong heterogeneity. The CatBoost model achieves a balanced accuracy of 92.7% and an F1-score of 89.3% in six lithology classifications. This approach delivers high-precision geo-engineering decision support for the real-time control of horizontal well trajectories, which holds significant implications for the precision drilling of strongly heterogeneous reservoirs. |
|---|---|
| ISSN: | 2076-3417 |