Assessing the Dark Matter Content of Two Quasar Host Galaxies at z ∼ 6 through Gas Kinematics

We conduct a study of the gas kinematics of two quasar host galaxies at z  ≳ 6 traced by the [C ii ] emission line using the Atacama Large Millimeter/submillimeter Array. By combining deep observations at both low and high resolution, we recover the diffuse emission, resolve its structure, and measu...

Full description

Saved in:
Bibliographic Details
Main Authors: Qinyue Fei, John D. Silverman, Seiji Fujimoto, Ran Wang, Luis C. Ho, Manuela Bischetti, Stefano Carniani, Michele Ginolfi, Gareth Jones, Roberto Maiolino, Wiphu Rujopakarn, N. M. Förster Schreiber, Juan M. Espejo Salcedo, L. L. Lee
Format: Article
Language:English
Published: IOP Publishing 2025-01-01
Series:The Astrophysical Journal
Subjects:
Online Access:https://doi.org/10.3847/1538-4357/ada145
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832096241910022144
author Qinyue Fei
John D. Silverman
Seiji Fujimoto
Ran Wang
Luis C. Ho
Manuela Bischetti
Stefano Carniani
Michele Ginolfi
Gareth Jones
Roberto Maiolino
Wiphu Rujopakarn
N. M. Förster Schreiber
Juan M. Espejo Salcedo
L. L. Lee
author_facet Qinyue Fei
John D. Silverman
Seiji Fujimoto
Ran Wang
Luis C. Ho
Manuela Bischetti
Stefano Carniani
Michele Ginolfi
Gareth Jones
Roberto Maiolino
Wiphu Rujopakarn
N. M. Förster Schreiber
Juan M. Espejo Salcedo
L. L. Lee
author_sort Qinyue Fei
collection DOAJ
description We conduct a study of the gas kinematics of two quasar host galaxies at z  ≳ 6 traced by the [C ii ] emission line using the Atacama Large Millimeter/submillimeter Array. By combining deep observations at both low and high resolution, we recover the diffuse emission, resolve its structure, and measure the rotation curves from the inner region of the galaxy to its outskirts using DysmalPy and ^3D Barolo . Assuming that both galaxies exhibit disk rotation driven by the gravitational potential of the galaxy, we find that the best-fit disk models have a V _rot / σ  ≈ 2 and inferred circular velocities out to ∼6–8 kpc scales, well beyond the likely stellar distribution. We then determine the mass profiles of each component (stars, gas, dark matter) with priors on the baryon and dark matter properties. We find relatively large dark matter fractions within their effective radii ( f _DM ( R  <  R _e ) = ${0.61}_{-0.08}^{+0.08}$ and ${0.53}_{-0.23}^{+0.20}$ , respectively), which are significantly larger than those extrapolated from lower redshift studies and remain robust under different input parameters verified by Monte Carlo simulations. The large f _DM ( R  <  R _e ) corresponds to halo masses of ∼10 ^12.5 −10 ^12.8 M _⊙ , thus representative of the most massive halos at these redshifts. Notably, while the masses of these supermassive black holes (SMBHs) are approximately 1 dex higher than the low-redshift relationship with stellar mass, the closer alignment of SMBH and halo masses with a local relationship may indicate that the early formation of these SMBHs is linked to their dark matter halos, providing insights into the coevolution of galaxies and black holes in the early Universe.
format Article
id doaj-art-7320aaa28286487e9b4d6a7f8610adaa
institution Kabale University
issn 1538-4357
language English
publishDate 2025-01-01
publisher IOP Publishing
record_format Article
series The Astrophysical Journal
spelling doaj-art-7320aaa28286487e9b4d6a7f8610adaa2025-02-05T16:00:37ZengIOP PublishingThe Astrophysical Journal1538-43572025-01-0198018410.3847/1538-4357/ada145Assessing the Dark Matter Content of Two Quasar Host Galaxies at z ∼ 6 through Gas KinematicsQinyue Fei0https://orcid.org/0000-0001-7232-5355John D. Silverman1https://orcid.org/0000-0002-0000-6977Seiji Fujimoto2https://orcid.org/0000-0001-7201-5066Ran Wang3https://orcid.org/0000-0003-4956-5742Luis C. Ho4Manuela Bischetti5https://orcid.org/0000-0002-4314-021XStefano Carniani6https://orcid.org/0000-0002-6719-380XMichele Ginolfi7https://orcid.org/0000-0002-9122-1700Gareth Jones8https://orcid.org/0000-0002-0267-9024Roberto Maiolino9https://orcid.org/0000-0002-4985-3819Wiphu Rujopakarn10https://orcid.org/0000-0002-0303-499XN. M. Förster Schreiber11https://orcid.org/0000-0003-4264-3381Juan M. Espejo Salcedo12https://orcid.org/0000-0001-6703-4676L. L. Lee13https://orcid.org/0000-0001-7457-4371Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI) , UTIAS, Tokyo Institutes for Advanced Study, University of Tokyo, Chiba, 277-8583, Japan; Department of Astronomy, School of Physics, Peking University , Beijing 100871, People’s Republic of China; Kavli Institute for Astronomy and Astrophysics, Peking University , Beijing 100871, People’s Republic of ChinaKavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI) , UTIAS, Tokyo Institutes for Advanced Study, University of Tokyo, Chiba, 277-8583, Japan; Department of Astronomy, School of Science, The University of Tokyo , 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan; Center for Data-Driven Discovery, Kavli PMU (WPI), UTIAS, The University of Tokyo , Kashiwa,Chiba 277-8583, Japan; Center for Astrophysical Sciences, Departmentof Physics & Astronomy, Johns Hopkins University , Baltimore, MD 21218, USADepartment of Astronomy, The University of Texas at Austin , Austin,TX, USADepartment of Astronomy, School of Physics, Peking University , Beijing 100871, People’s Republic of China; Kavli Institute for Astronomy and Astrophysics, Peking University , Beijing 100871, People’s Republic of ChinaDepartment of Astronomy, School of Physics, Peking University , Beijing 100871, People’s Republic of China; Kavli Institute for Astronomy and Astrophysics, Peking University , Beijing 100871, People’s Republic of ChinaDipartimento di Fisica, Universitá di Trieste , Sezione di Astronomia, Via G.B. Tiepolo 11, I-34131 Trieste, Italy; INAF—Osservatorio Astronomico di Trieste , Via G. B. Tiepolo 11, I–34131 Trieste, ItalyScuola Normale Superiore , Piazza dei Cavalieri 7, I-56126 Pisa, ItalyDipartimento di Fisica e Astronomia, Università di Firenze , Via G. Sansone 1, I-50019, Sesto F.no (Firenze), Italy; INAF–Osservatorio Astrofisico di Arcetri , Largo E. Fermi 5, I-50125, Florence, ItalyCavendish Laboratory, University of Cambridge , 19 J. J. Thomson Avenue, Cambridge CB3 0HE, UK; Kavli Institute for Cosmology, University of Cambridge , Madingley Road, Cambridge CB3 0HA, UKCavendish Laboratory, University of Cambridge , 19 J. J. Thomson Avenue, Cambridge CB3 0HE, UK; Kavli Institute for Cosmology, University of Cambridge , Madingley Road, Cambridge CB3 0HA, UK; Department of Physics & Astronomy, University College London , GowerStreet, London WC1E 6BT, UKNational Astronomical Research Institute of Thailand , Don Kaeo, Mae Rim, Chiang Mai 50180, Thailand; Department of Physics, Faculty of Science, Chulalongkorn University , 254 Phayathai Road, Pathumwan, Bangkok 10330, ThailandMax-Planck-Institut für extraterrestrische Physik (MPE) , Giessenbachstr. 1, D-85748 Garching, GermanyMax-Planck-Institut für extraterrestrische Physik (MPE) , Giessenbachstr. 1, D-85748 Garching, GermanyMax-Planck-Institut für extraterrestrische Physik (MPE) , Giessenbachstr. 1, D-85748 Garching, GermanyWe conduct a study of the gas kinematics of two quasar host galaxies at z  ≳ 6 traced by the [C ii ] emission line using the Atacama Large Millimeter/submillimeter Array. By combining deep observations at both low and high resolution, we recover the diffuse emission, resolve its structure, and measure the rotation curves from the inner region of the galaxy to its outskirts using DysmalPy and ^3D Barolo . Assuming that both galaxies exhibit disk rotation driven by the gravitational potential of the galaxy, we find that the best-fit disk models have a V _rot / σ  ≈ 2 and inferred circular velocities out to ∼6–8 kpc scales, well beyond the likely stellar distribution. We then determine the mass profiles of each component (stars, gas, dark matter) with priors on the baryon and dark matter properties. We find relatively large dark matter fractions within their effective radii ( f _DM ( R  <  R _e ) = ${0.61}_{-0.08}^{+0.08}$ and ${0.53}_{-0.23}^{+0.20}$ , respectively), which are significantly larger than those extrapolated from lower redshift studies and remain robust under different input parameters verified by Monte Carlo simulations. The large f _DM ( R  <  R _e ) corresponds to halo masses of ∼10 ^12.5 −10 ^12.8 M _⊙ , thus representative of the most massive halos at these redshifts. Notably, while the masses of these supermassive black holes (SMBHs) are approximately 1 dex higher than the low-redshift relationship with stellar mass, the closer alignment of SMBH and halo masses with a local relationship may indicate that the early formation of these SMBHs is linked to their dark matter halos, providing insights into the coevolution of galaxies and black holes in the early Universe.https://doi.org/10.3847/1538-4357/ada145High-redshift galaxiesQuasarsGalaxy kinematicsGalaxy dark matter halos
spellingShingle Qinyue Fei
John D. Silverman
Seiji Fujimoto
Ran Wang
Luis C. Ho
Manuela Bischetti
Stefano Carniani
Michele Ginolfi
Gareth Jones
Roberto Maiolino
Wiphu Rujopakarn
N. M. Förster Schreiber
Juan M. Espejo Salcedo
L. L. Lee
Assessing the Dark Matter Content of Two Quasar Host Galaxies at z ∼ 6 through Gas Kinematics
The Astrophysical Journal
High-redshift galaxies
Quasars
Galaxy kinematics
Galaxy dark matter halos
title Assessing the Dark Matter Content of Two Quasar Host Galaxies at z ∼ 6 through Gas Kinematics
title_full Assessing the Dark Matter Content of Two Quasar Host Galaxies at z ∼ 6 through Gas Kinematics
title_fullStr Assessing the Dark Matter Content of Two Quasar Host Galaxies at z ∼ 6 through Gas Kinematics
title_full_unstemmed Assessing the Dark Matter Content of Two Quasar Host Galaxies at z ∼ 6 through Gas Kinematics
title_short Assessing the Dark Matter Content of Two Quasar Host Galaxies at z ∼ 6 through Gas Kinematics
title_sort assessing the dark matter content of two quasar host galaxies at z ∼ 6 through gas kinematics
topic High-redshift galaxies
Quasars
Galaxy kinematics
Galaxy dark matter halos
url https://doi.org/10.3847/1538-4357/ada145
work_keys_str_mv AT qinyuefei assessingthedarkmattercontentoftwoquasarhostgalaxiesatz6throughgaskinematics
AT johndsilverman assessingthedarkmattercontentoftwoquasarhostgalaxiesatz6throughgaskinematics
AT seijifujimoto assessingthedarkmattercontentoftwoquasarhostgalaxiesatz6throughgaskinematics
AT ranwang assessingthedarkmattercontentoftwoquasarhostgalaxiesatz6throughgaskinematics
AT luischo assessingthedarkmattercontentoftwoquasarhostgalaxiesatz6throughgaskinematics
AT manuelabischetti assessingthedarkmattercontentoftwoquasarhostgalaxiesatz6throughgaskinematics
AT stefanocarniani assessingthedarkmattercontentoftwoquasarhostgalaxiesatz6throughgaskinematics
AT micheleginolfi assessingthedarkmattercontentoftwoquasarhostgalaxiesatz6throughgaskinematics
AT garethjones assessingthedarkmattercontentoftwoquasarhostgalaxiesatz6throughgaskinematics
AT robertomaiolino assessingthedarkmattercontentoftwoquasarhostgalaxiesatz6throughgaskinematics
AT wiphurujopakarn assessingthedarkmattercontentoftwoquasarhostgalaxiesatz6throughgaskinematics
AT nmforsterschreiber assessingthedarkmattercontentoftwoquasarhostgalaxiesatz6throughgaskinematics
AT juanmespejosalcedo assessingthedarkmattercontentoftwoquasarhostgalaxiesatz6throughgaskinematics
AT lllee assessingthedarkmattercontentoftwoquasarhostgalaxiesatz6throughgaskinematics