Quantum Two-Way Protocol Beyond Superdense Coding: Joint Transfer of Data and Entanglement

In this article, we introduce a generalization of one-way superdense coding to two-way communication protocols for transmitting classical bits by using entangled quantum pairs. The proposed protocol jointly addresses the provision of entangled pairs and superdense coding, introducing an integrated a...

Full description

Saved in:
Bibliographic Details
Main Authors: Kristian S. Jensen, Lorenzo Valentini, Rene B. Christensen, Marco Chiani, Petar Popovski
Format: Article
Language:English
Published: IEEE 2025-01-01
Series:IEEE Transactions on Quantum Engineering
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10836906/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this article, we introduce a generalization of one-way superdense coding to two-way communication protocols for transmitting classical bits by using entangled quantum pairs. The proposed protocol jointly addresses the provision of entangled pairs and superdense coding, introducing an integrated approach for managing entanglement within the communication protocol. To assess the performance of the proposed protocol, we consider its data rate and resource usage, and we analyze this both in an ideal setting with no decoherence and in a more realistic setting where decoherence must be taken into account. In the ideal case, the proposal offers a 50% increase in both data rate and resource usage efficiency compared to conventional protocols. Even when decoherence is taken into consideration, the quantum protocol performs better as long as the decoherence time is not extremely short. Finally, we present the results of implementing the protocol in a computer simulation based on the NetSquid framework. We compare the simulation results with the theoretical values.
ISSN:2689-1808