Schur Convexity and Inequalities for a Multivariate Symmetric Function

In the article, we provide the Schur, Schur multiplicative, and Schur harmonic convexities properties for the symmetry function Fnx,r=Fnx1,x2,⋯,xn;r=∏1≤i1<i2<⋯<ir≤n ∑j=1r xij/1−xij1/r on 0,1n and find several new analytical inequalities by use of the majorization theory, where x=x1,⋯,xn∈0,1...

Full description

Saved in:
Bibliographic Details
Main Authors: Ming-Bao Sun, Xin-Ping Li, Sheng-Fang Tang, Zai-Yun Zhang
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2020/9676231
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832559978181820416
author Ming-Bao Sun
Xin-Ping Li
Sheng-Fang Tang
Zai-Yun Zhang
author_facet Ming-Bao Sun
Xin-Ping Li
Sheng-Fang Tang
Zai-Yun Zhang
author_sort Ming-Bao Sun
collection DOAJ
description In the article, we provide the Schur, Schur multiplicative, and Schur harmonic convexities properties for the symmetry function Fnx,r=Fnx1,x2,⋯,xn;r=∏1≤i1<i2<⋯<ir≤n ∑j=1r xij/1−xij1/r on 0,1n and find several new analytical inequalities by use of the majorization theory, where x=x1,⋯,xn∈0,1n, r=1,2,⋯,n and i1,i2,⋯,in are positive integers.
format Article
id doaj-art-725d6826cb0941e4aa5134f0d158bb3c
institution Kabale University
issn 2314-8896
2314-8888
language English
publishDate 2020-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces
spelling doaj-art-725d6826cb0941e4aa5134f0d158bb3c2025-02-03T01:28:42ZengWileyJournal of Function Spaces2314-88962314-88882020-01-01202010.1155/2020/96762319676231Schur Convexity and Inequalities for a Multivariate Symmetric FunctionMing-Bao Sun0Xin-Ping Li1Sheng-Fang Tang2Zai-Yun Zhang3School of Mathematics, Hunan Institute of Science and Technology, Yueyang 414006, ChinaSchool of Mathematics, Hunan Institute of Science and Technology, Yueyang 414006, ChinaSchool of Mathematics, Hunan Institute of Science and Technology, Yueyang 414006, ChinaSchool of Mathematics, Hunan Institute of Science and Technology, Yueyang 414006, ChinaIn the article, we provide the Schur, Schur multiplicative, and Schur harmonic convexities properties for the symmetry function Fnx,r=Fnx1,x2,⋯,xn;r=∏1≤i1<i2<⋯<ir≤n ∑j=1r xij/1−xij1/r on 0,1n and find several new analytical inequalities by use of the majorization theory, where x=x1,⋯,xn∈0,1n, r=1,2,⋯,n and i1,i2,⋯,in are positive integers.http://dx.doi.org/10.1155/2020/9676231
spellingShingle Ming-Bao Sun
Xin-Ping Li
Sheng-Fang Tang
Zai-Yun Zhang
Schur Convexity and Inequalities for a Multivariate Symmetric Function
Journal of Function Spaces
title Schur Convexity and Inequalities for a Multivariate Symmetric Function
title_full Schur Convexity and Inequalities for a Multivariate Symmetric Function
title_fullStr Schur Convexity and Inequalities for a Multivariate Symmetric Function
title_full_unstemmed Schur Convexity and Inequalities for a Multivariate Symmetric Function
title_short Schur Convexity and Inequalities for a Multivariate Symmetric Function
title_sort schur convexity and inequalities for a multivariate symmetric function
url http://dx.doi.org/10.1155/2020/9676231
work_keys_str_mv AT mingbaosun schurconvexityandinequalitiesforamultivariatesymmetricfunction
AT xinpingli schurconvexityandinequalitiesforamultivariatesymmetricfunction
AT shengfangtang schurconvexityandinequalitiesforamultivariatesymmetricfunction
AT zaiyunzhang schurconvexityandinequalitiesforamultivariatesymmetricfunction