A Note on Iwasawa-Type Decomposition

We study the Iwasawa-type decomposition of an open subset of SL(n,ℂ) as SU(p,q)AN. We show that the dressing action of SU(p,q) is globally defined on the space of admissible elements in AN. We also show that the space of admissible elements is a multiplicative subset of AN. We establish a geometric...

Full description

Saved in:
Bibliographic Details
Main Author: Philip Foth
Format: Article
Language:English
Published: Wiley 2011-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2011/135167
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832564202844192768
author Philip Foth
author_facet Philip Foth
author_sort Philip Foth
collection DOAJ
description We study the Iwasawa-type decomposition of an open subset of SL(n,ℂ) as SU(p,q)AN. We show that the dressing action of SU(p,q) is globally defined on the space of admissible elements in AN. We also show that the space of admissible elements is a multiplicative subset of AN. We establish a geometric criterion: the symmetrization of an admissible element maps the positive cone in ℂn into itself.
format Article
id doaj-art-72136cec62124359a16f1837ce4401c6
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2011-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-72136cec62124359a16f1837ce4401c62025-02-03T01:11:38ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252011-01-01201110.1155/2011/135167135167A Note on Iwasawa-Type DecompositionPhilip Foth0CEGEP, Champlain St. Lawrence, QC, G1V 4K2, CanadaWe study the Iwasawa-type decomposition of an open subset of SL(n,ℂ) as SU(p,q)AN. We show that the dressing action of SU(p,q) is globally defined on the space of admissible elements in AN. We also show that the space of admissible elements is a multiplicative subset of AN. We establish a geometric criterion: the symmetrization of an admissible element maps the positive cone in ℂn into itself.http://dx.doi.org/10.1155/2011/135167
spellingShingle Philip Foth
A Note on Iwasawa-Type Decomposition
International Journal of Mathematics and Mathematical Sciences
title A Note on Iwasawa-Type Decomposition
title_full A Note on Iwasawa-Type Decomposition
title_fullStr A Note on Iwasawa-Type Decomposition
title_full_unstemmed A Note on Iwasawa-Type Decomposition
title_short A Note on Iwasawa-Type Decomposition
title_sort note on iwasawa type decomposition
url http://dx.doi.org/10.1155/2011/135167
work_keys_str_mv AT philipfoth anoteoniwasawatypedecomposition
AT philipfoth noteoniwasawatypedecomposition