Nonself-Adjoint Second-Order Difference Operators in Limit-Circle Cases

We consider the maximal dissipative second-order difference (or discrete Sturm-Liouville) operators acting in the Hilbert space ℓ2𝑤(ℤ) (ℤ:={0,±1,±2,…}), that is, the extensions of a minimal symmetric operator with defect index (2,2) (in the Weyl-Hamburger limit-circle cases at ±∞). We investigate...

Full description

Saved in:
Bibliographic Details
Main Author: Bilender P. Allahverdiev
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2012/473461
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832562817327169536
author Bilender P. Allahverdiev
author_facet Bilender P. Allahverdiev
author_sort Bilender P. Allahverdiev
collection DOAJ
description We consider the maximal dissipative second-order difference (or discrete Sturm-Liouville) operators acting in the Hilbert space ℓ2𝑤(ℤ) (ℤ:={0,±1,±2,…}), that is, the extensions of a minimal symmetric operator with defect index (2,2) (in the Weyl-Hamburger limit-circle cases at ±∞). We investigate two classes of maximal dissipative operators with separated boundary conditions, called “dissipative at −∞” and “dissipative at ∞.” In each case, we construct a self-adjoint dilation of the maximal dissipative operator and its incoming and outgoing spectral representations, which make it possible to determine the scattering matrix of the dilation. We also establish a functional model of the maximal dissipative operator and determine its characteristic function through the Titchmarsh-Weyl function of the self-adjoint operator. We prove the completeness of the system of eigenvectors and associated vectors of the maximal dissipative operators.
format Article
id doaj-art-71e4afde24d04456a58549dee5c82044
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2012-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-71e4afde24d04456a58549dee5c820442025-02-03T01:21:37ZengWileyAbstract and Applied Analysis1085-33751687-04092012-01-01201210.1155/2012/473461473461Nonself-Adjoint Second-Order Difference Operators in Limit-Circle CasesBilender P. Allahverdiev0Department of Mathematics, Suleyman Demirel University, 32260 Isparta, TurkeyWe consider the maximal dissipative second-order difference (or discrete Sturm-Liouville) operators acting in the Hilbert space ℓ2𝑤(ℤ) (ℤ:={0,±1,±2,…}), that is, the extensions of a minimal symmetric operator with defect index (2,2) (in the Weyl-Hamburger limit-circle cases at ±∞). We investigate two classes of maximal dissipative operators with separated boundary conditions, called “dissipative at −∞” and “dissipative at ∞.” In each case, we construct a self-adjoint dilation of the maximal dissipative operator and its incoming and outgoing spectral representations, which make it possible to determine the scattering matrix of the dilation. We also establish a functional model of the maximal dissipative operator and determine its characteristic function through the Titchmarsh-Weyl function of the self-adjoint operator. We prove the completeness of the system of eigenvectors and associated vectors of the maximal dissipative operators.http://dx.doi.org/10.1155/2012/473461
spellingShingle Bilender P. Allahverdiev
Nonself-Adjoint Second-Order Difference Operators in Limit-Circle Cases
Abstract and Applied Analysis
title Nonself-Adjoint Second-Order Difference Operators in Limit-Circle Cases
title_full Nonself-Adjoint Second-Order Difference Operators in Limit-Circle Cases
title_fullStr Nonself-Adjoint Second-Order Difference Operators in Limit-Circle Cases
title_full_unstemmed Nonself-Adjoint Second-Order Difference Operators in Limit-Circle Cases
title_short Nonself-Adjoint Second-Order Difference Operators in Limit-Circle Cases
title_sort nonself adjoint second order difference operators in limit circle cases
url http://dx.doi.org/10.1155/2012/473461
work_keys_str_mv AT bilenderpallahverdiev nonselfadjointsecondorderdifferenceoperatorsinlimitcirclecases