Hardware-Accelerated Non-Contact System for Sleep Disorder Monitoring and Analysis
This study analyzes human sleep disorders using non-contact approaches. The proposed approach analyzes periodic limb movement disorder (PLMD) under sleep conditions. This was conceptualized as data capture using a non-contact approach with ultrasonic sensors. The model was designed to estimate PLMD...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Sensors |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1424-8220/25/9/2747 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study analyzes human sleep disorders using non-contact approaches. The proposed approach analyzes periodic limb movement disorder (PLMD) under sleep conditions. This was conceptualized as data capture using a non-contact approach with ultrasonic sensors. The model was designed to estimate PLMD and classify it using real-time sleep data and a machine learning-based random forest classifier. Hardware schemes play a vital role in capturing sleep data in real time using ultrasonic sensors. A field-programmable gate array (FPGA)-based accelerator for a random forest classifier was designed to analyze PLMD. This is a novel approach that aids subjects in taking further medications. Verilog HDL was used for PLMD estimation using a Xilinx Vivado 2021.1 simulation and synthesis. The proposed method was validated using a Xilinx Zynq-7000 Zed board XC7Z020-CLG484. |
|---|---|
| ISSN: | 1424-8220 |