Trade-off between computation time and solution quality for integrated generation and transmission expansion planning with N-1 security criterion
The generation and transmission (G&T) expansion planning of large-scale systems is usually carried out hierarchically due to the high complexity of the problem. However, this hierarchical plan may be more expensive than a fully integrated (co-optimized) G&T plan that, on the other hand, requ...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2025-03-01
|
Series: | International Journal of Electrical Power & Energy Systems |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S0142061524006690 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832595403533451264 |
---|---|
author | Lucas Y. Okamura Carmen L.T. Borges Gianfranco Chicco |
author_facet | Lucas Y. Okamura Carmen L.T. Borges Gianfranco Chicco |
author_sort | Lucas Y. Okamura |
collection | DOAJ |
description | The generation and transmission (G&T) expansion planning of large-scale systems is usually carried out hierarchically due to the high complexity of the problem. However, this hierarchical plan may be more expensive than a fully integrated (co-optimized) G&T plan that, on the other hand, requires high computation time. Therefore, the trade-off between computation time and solution quality is of great importance, especially with the integration of renewable generation. This paper proposes and assesses alternative formulations of the integrated G&T planning problem, also considering the system operation simulation under the N-1 security criterion, seeking to balance solution optimality and computational effort. The assessments are illustrated for the Chilean electrical system. The main outcome is that one of the proposed methods, in which the future cost function is maintained fixed during the generation and transmission optimization and is recalculated only in the final simulation of the system operation, achieves results very close to the fully integrated generation, transmission, and operation optimization method. This method presents a cost reduction of 8 % compared to a hierarchical approach, which represents savings of around 700 million dollars, and 50 % less computation time compared to the fully integrated method. For the same proposed method, the preliminary calculation of an optimal solution without applying the N-1 security constraint as a starting point, followed by re-optimization with active N-1 security constraints, contributes to a 65 % reduction of the computation time without significantly impacting the quality of the solution. |
format | Article |
id | doaj-art-713f7461f7c641b08daa0805f8d87e9f |
institution | Kabale University |
issn | 0142-0615 |
language | English |
publishDate | 2025-03-01 |
publisher | Elsevier |
record_format | Article |
series | International Journal of Electrical Power & Energy Systems |
spelling | doaj-art-713f7461f7c641b08daa0805f8d87e9f2025-01-19T06:24:04ZengElsevierInternational Journal of Electrical Power & Energy Systems0142-06152025-03-01164110444Trade-off between computation time and solution quality for integrated generation and transmission expansion planning with N-1 security criterionLucas Y. Okamura0Carmen L.T. Borges1Gianfranco Chicco2PSR, Rio de Janeiro, BrazilFederal University of Rio de Janeiro, Rio de Janeiro, Brazil; Corresponding author.Politecnico di Torino, Torino, ItalyThe generation and transmission (G&T) expansion planning of large-scale systems is usually carried out hierarchically due to the high complexity of the problem. However, this hierarchical plan may be more expensive than a fully integrated (co-optimized) G&T plan that, on the other hand, requires high computation time. Therefore, the trade-off between computation time and solution quality is of great importance, especially with the integration of renewable generation. This paper proposes and assesses alternative formulations of the integrated G&T planning problem, also considering the system operation simulation under the N-1 security criterion, seeking to balance solution optimality and computational effort. The assessments are illustrated for the Chilean electrical system. The main outcome is that one of the proposed methods, in which the future cost function is maintained fixed during the generation and transmission optimization and is recalculated only in the final simulation of the system operation, achieves results very close to the fully integrated generation, transmission, and operation optimization method. This method presents a cost reduction of 8 % compared to a hierarchical approach, which represents savings of around 700 million dollars, and 50 % less computation time compared to the fully integrated method. For the same proposed method, the preliminary calculation of an optimal solution without applying the N-1 security constraint as a starting point, followed by re-optimization with active N-1 security constraints, contributes to a 65 % reduction of the computation time without significantly impacting the quality of the solution.http://www.sciencedirect.com/science/article/pii/S0142061524006690Power system planningRenewable GenerationSecurityOptimizationMixed Integer Linear ProgrammingStochastic Dual Dynamic Programming |
spellingShingle | Lucas Y. Okamura Carmen L.T. Borges Gianfranco Chicco Trade-off between computation time and solution quality for integrated generation and transmission expansion planning with N-1 security criterion International Journal of Electrical Power & Energy Systems Power system planning Renewable Generation Security Optimization Mixed Integer Linear Programming Stochastic Dual Dynamic Programming |
title | Trade-off between computation time and solution quality for integrated generation and transmission expansion planning with N-1 security criterion |
title_full | Trade-off between computation time and solution quality for integrated generation and transmission expansion planning with N-1 security criterion |
title_fullStr | Trade-off between computation time and solution quality for integrated generation and transmission expansion planning with N-1 security criterion |
title_full_unstemmed | Trade-off between computation time and solution quality for integrated generation and transmission expansion planning with N-1 security criterion |
title_short | Trade-off between computation time and solution quality for integrated generation and transmission expansion planning with N-1 security criterion |
title_sort | trade off between computation time and solution quality for integrated generation and transmission expansion planning with n 1 security criterion |
topic | Power system planning Renewable Generation Security Optimization Mixed Integer Linear Programming Stochastic Dual Dynamic Programming |
url | http://www.sciencedirect.com/science/article/pii/S0142061524006690 |
work_keys_str_mv | AT lucasyokamura tradeoffbetweencomputationtimeandsolutionqualityforintegratedgenerationandtransmissionexpansionplanningwithn1securitycriterion AT carmenltborges tradeoffbetweencomputationtimeandsolutionqualityforintegratedgenerationandtransmissionexpansionplanningwithn1securitycriterion AT gianfrancochicco tradeoffbetweencomputationtimeandsolutionqualityforintegratedgenerationandtransmissionexpansionplanningwithn1securitycriterion |