On the Approximation Properties of q−Analogue Bivariate λ-Bernstein Type Operators
In this article, we establish an extension of the bivariate generalization of the q-Bernstein type operators involving parameter λ and extension of GBS (Generalized Boolean Sum) operators of bivariate q-Bernstein type. For the first operators, we state the Volkov-type theorem and we obtain a Voronov...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Journal of Function Spaces |
Online Access: | http://dx.doi.org/10.1155/2020/4589310 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article, we establish an extension of the bivariate generalization of the q-Bernstein type operators involving parameter λ and extension of GBS (Generalized Boolean Sum) operators of bivariate q-Bernstein type. For the first operators, we state the Volkov-type theorem and we obtain a Voronovskaja type and investigate the degree of approximation by means of the Lipschitz type space. For the GBS type operators, we establish their degree of approximation in terms of the mixed modulus of smoothness. The comparison of convergence of the bivariate q-Bernstein type operators based on parameters and its GBS type operators is shown by illustrative graphics using MATLAB software. |
---|---|
ISSN: | 2314-8896 2314-8888 |