An Upper Bound for Locating Strings with High Probability Within Consecutive Bits of Pi

Numerous studies on the number pi (<inline-formula><math display="inline"><semantics><mi>π</mi></semantics></math></inline-formula>) explore its properties, including normality and applicability. This research, grounded in two hypotheses, pro...

Full description

Saved in:
Bibliographic Details
Main Authors: Víctor Manuel Silva-García, Manuel Alejandro Cardona-López, Rolando Flores-Carapia
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/2/313
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832588066296954880
author Víctor Manuel Silva-García
Manuel Alejandro Cardona-López
Rolando Flores-Carapia
author_facet Víctor Manuel Silva-García
Manuel Alejandro Cardona-López
Rolando Flores-Carapia
author_sort Víctor Manuel Silva-García
collection DOAJ
description Numerous studies on the number pi (<inline-formula><math display="inline"><semantics><mi>π</mi></semantics></math></inline-formula>) explore its properties, including normality and applicability. This research, grounded in two hypotheses, proposes and proves a theorem that employs a Bernoulli experiment to demonstrate the high probability of encountering any finite bit string within a sequence of consecutive bits in the decimal part of <inline-formula><math display="inline"><semantics><mi>π</mi></semantics></math></inline-formula>. This aligns with findings related to its normality. To support the hypotheses, we present experimental evidence about the equiprobable and independent properties of bits of <inline-formula><math display="inline"><semantics><mi>π</mi></semantics></math></inline-formula>, analyzing their distribution, and measuring correlations between bit strings. Additionally, from a cryptographic perspective, we evaluate the chaotic properties of two images generated using bits of <inline-formula><math display="inline"><semantics><mi>π</mi></semantics></math></inline-formula>. These properties are evaluated similarly to those of encrypted images, using measures of correlation and entropy, along with two hypothesis tests to confirm the uniform distribution of bits and the absence of periodic patterns. Unlike previous works that solely examine the presence of sequences, this study provides, as a corollary, a formula to calculate an upper bound <i>N</i>. This bound represents the length of the sequence from <inline-formula><math display="inline"><semantics><mi>π</mi></semantics></math></inline-formula> required to ensure the location of any <i>n</i>-bit string at least once, with an adjustable probability <i>p</i> that can be set arbitrarily close to one. To validate the formula, we identify sequences of up to <inline-formula><math display="inline"><semantics><mrow><mi>n</mi><mo>=</mo></mrow></semantics></math></inline-formula> 40 consecutive zeros and ones within the first <i>N</i> bits of <inline-formula><math display="inline"><semantics><mi>π</mi></semantics></math></inline-formula>. This work has potential applications in Cryptography that use the number <inline-formula><math display="inline"><semantics><mi>π</mi></semantics></math></inline-formula> for random sequence generation, offering insights into the number of bits of <inline-formula><math display="inline"><semantics><mi>π</mi></semantics></math></inline-formula> required to ensure good randomness properties.
format Article
id doaj-art-7103ee1cd4814e22b46000c192f6d048
institution Kabale University
issn 2227-7390
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-7103ee1cd4814e22b46000c192f6d0482025-01-24T13:40:09ZengMDPI AGMathematics2227-73902025-01-0113231310.3390/math13020313An Upper Bound for Locating Strings with High Probability Within Consecutive Bits of PiVíctor Manuel Silva-García0Manuel Alejandro Cardona-López1Rolando Flores-Carapia2Centro de Innovación y Desarrollo Tecnológico en Cómputo, Instituto Politécnico Nacional, Mexico City 07738, MexicoCentro de Investigación en Computación, Instituto Politécnico Nacional, Mexico City 07738, MexicoCentro de Innovación y Desarrollo Tecnológico en Cómputo, Instituto Politécnico Nacional, Mexico City 07738, MexicoNumerous studies on the number pi (<inline-formula><math display="inline"><semantics><mi>π</mi></semantics></math></inline-formula>) explore its properties, including normality and applicability. This research, grounded in two hypotheses, proposes and proves a theorem that employs a Bernoulli experiment to demonstrate the high probability of encountering any finite bit string within a sequence of consecutive bits in the decimal part of <inline-formula><math display="inline"><semantics><mi>π</mi></semantics></math></inline-formula>. This aligns with findings related to its normality. To support the hypotheses, we present experimental evidence about the equiprobable and independent properties of bits of <inline-formula><math display="inline"><semantics><mi>π</mi></semantics></math></inline-formula>, analyzing their distribution, and measuring correlations between bit strings. Additionally, from a cryptographic perspective, we evaluate the chaotic properties of two images generated using bits of <inline-formula><math display="inline"><semantics><mi>π</mi></semantics></math></inline-formula>. These properties are evaluated similarly to those of encrypted images, using measures of correlation and entropy, along with two hypothesis tests to confirm the uniform distribution of bits and the absence of periodic patterns. Unlike previous works that solely examine the presence of sequences, this study provides, as a corollary, a formula to calculate an upper bound <i>N</i>. This bound represents the length of the sequence from <inline-formula><math display="inline"><semantics><mi>π</mi></semantics></math></inline-formula> required to ensure the location of any <i>n</i>-bit string at least once, with an adjustable probability <i>p</i> that can be set arbitrarily close to one. To validate the formula, we identify sequences of up to <inline-formula><math display="inline"><semantics><mrow><mi>n</mi><mo>=</mo></mrow></semantics></math></inline-formula> 40 consecutive zeros and ones within the first <i>N</i> bits of <inline-formula><math display="inline"><semantics><mi>π</mi></semantics></math></inline-formula>. This work has potential applications in Cryptography that use the number <inline-formula><math display="inline"><semantics><mi>π</mi></semantics></math></inline-formula> for random sequence generation, offering insights into the number of bits of <inline-formula><math display="inline"><semantics><mi>π</mi></semantics></math></inline-formula> required to ensure good randomness properties.https://www.mdpi.com/2227-7390/13/2/313Bernoulli experimentchaosentropynormal numbersPi numberupper bound
spellingShingle Víctor Manuel Silva-García
Manuel Alejandro Cardona-López
Rolando Flores-Carapia
An Upper Bound for Locating Strings with High Probability Within Consecutive Bits of Pi
Mathematics
Bernoulli experiment
chaos
entropy
normal numbers
Pi number
upper bound
title An Upper Bound for Locating Strings with High Probability Within Consecutive Bits of Pi
title_full An Upper Bound for Locating Strings with High Probability Within Consecutive Bits of Pi
title_fullStr An Upper Bound for Locating Strings with High Probability Within Consecutive Bits of Pi
title_full_unstemmed An Upper Bound for Locating Strings with High Probability Within Consecutive Bits of Pi
title_short An Upper Bound for Locating Strings with High Probability Within Consecutive Bits of Pi
title_sort upper bound for locating strings with high probability within consecutive bits of pi
topic Bernoulli experiment
chaos
entropy
normal numbers
Pi number
upper bound
url https://www.mdpi.com/2227-7390/13/2/313
work_keys_str_mv AT victormanuelsilvagarcia anupperboundforlocatingstringswithhighprobabilitywithinconsecutivebitsofpi
AT manuelalejandrocardonalopez anupperboundforlocatingstringswithhighprobabilitywithinconsecutivebitsofpi
AT rolandoflorescarapia anupperboundforlocatingstringswithhighprobabilitywithinconsecutivebitsofpi
AT victormanuelsilvagarcia upperboundforlocatingstringswithhighprobabilitywithinconsecutivebitsofpi
AT manuelalejandrocardonalopez upperboundforlocatingstringswithhighprobabilitywithinconsecutivebitsofpi
AT rolandoflorescarapia upperboundforlocatingstringswithhighprobabilitywithinconsecutivebitsofpi