Research on Seismic Signal Denoising Model Based on DnCNN Network

Addressing the noise in seismic signals, a prevalent challenge within seismic signal processing, has been the focus of extensive research. Conventional algorithms for seismic signal denoising often fall short due to their reliance on manually determined feature functions and threshold parameters. Th...

Full description

Saved in:
Bibliographic Details
Main Authors: Li Duan, Jianxian Cai, Li Wang, Yan Shi
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/4/2083
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Addressing the noise in seismic signals, a prevalent challenge within seismic signal processing, has been the focus of extensive research. Conventional algorithms for seismic signal denoising often fall short due to their reliance on manually determined feature functions and threshold parameters. These limitations hinder effective noise removal, resulting in suboptimal signal-to-noise ratios (SNRs) and post-denoising waveform distortion. To address these shortcomings, this study introduces a novel denoising approach leveraging a DnCNN network. The DnCNN framework, which integrates batch normalization with residual learning, is adept at swiftly identifying and eliminating noise from seismic signals through its residual learning capabilities. To assess the efficacy of this DnCNN-based model, it was rigorously tested against a curated test set and benchmarked against other denoising techniques, including wavelet thresholding, empirical mode decomposition, and convolutional auto-encoders. The findings demonstrate that the DnCNN model not only significantly enhances the SNR and correlation coefficient of the processed seismic signals but also achieves superior noise reduction performance.
ISSN:2076-3417