Numerical Approaches of the Generalized Time-Fractional Burgers’ Equation with Time-Variable Coefficients
The generalized time-fractional, one-dimensional, nonlinear Burgers equation with time-variable coefficients is numerically investigated. The classical Burgers equation is generalized by considering the generalized Atangana-Baleanu time-fractional derivative. The studied model contains as particular...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2021-01-01
|
Series: | Journal of Function Spaces |
Online Access: | http://dx.doi.org/10.1155/2021/8803182 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The generalized time-fractional, one-dimensional, nonlinear Burgers equation with time-variable coefficients is numerically investigated. The classical Burgers equation is generalized by considering the generalized Atangana-Baleanu time-fractional derivative. The studied model contains as particular cases the Burgers equation with Atangana-Baleanu, Caputo-Fabrizio, and Caputo time-fractional derivatives. A numerical scheme, based on the finite-difference approximations and some integral representations of the two-parameter Mittag-Leffler functions, has been developed. Numerical solutions of a particular problem with initial and boundary values are determined by employing the proposed method. The numerical results are plotted to compare solutions corresponding to the problems with time-fractional derivatives with different kernels. |
---|---|
ISSN: | 2314-8888 |