Breather Positons and Rogue Waves for the Nonlocal Fokas-Lenells Equation

In this paper, we investigate breather positons and higher-order rogue waves for the nonlocal Fokas-Lenells equation. In this nonlocal optical system, rogue waves can be generated when periods of breather positons go to infinity. In addition, we find two very interesting phenomena: one is that rogue...

Full description

Saved in:
Bibliographic Details
Main Authors: Chun Wang, Rong Fan, Zhao Zhang, Biao Li
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2021/9959290
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we investigate breather positons and higher-order rogue waves for the nonlocal Fokas-Lenells equation. In this nonlocal optical system, rogue waves can be generated when periods of breather positons go to infinity. In addition, we find two very interesting phenomena: one is that rogue waves sitting on a periodic line wave background are derived; the other is that a hybrid of rogue waves and a periodic kink wave is also constructed. We believe that these interesting findings exist in the optical system corresponding to the nonlocal Fokas-Lenells equation.
ISSN:1687-9120
1687-9139