Crowding distance and IGD-driven grey wolf reinforcement learning approach for multi-objective agile earth observation satellite scheduling
With the rise of low-cost launches, miniaturized space technology, and commercialization, the cost of space missions has dropped, leading to a surge in flexible Earth observation satellites. This increased demand for complex and diverse imaging products requires addressing multi-objective optimizati...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2025-12-01
|
Series: | International Journal of Digital Earth |
Subjects: | |
Online Access: | https://www.tandfonline.com/doi/10.1080/17538947.2025.2458024 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With the rise of low-cost launches, miniaturized space technology, and commercialization, the cost of space missions has dropped, leading to a surge in flexible Earth observation satellites. This increased demand for complex and diverse imaging products requires addressing multi-objective optimization in practice. To this end, we propose a multi-objective agile Earth observation satellite scheduling problem (MOAEOSSP) model and introduce a reinforcement learning-based multi-objective grey wolf optimization (RLMOGWO) algorithm. It aims to maximize observation efficiency while minimizing energy consumption. During population initialization, the algorithm uses chaos mapping and opposition-based learning to enhance diversity and global search, reducing the risk of local optima. It integrates Q-learning into an improved multi-objective grey wolf optimization framework, designing state-action combinations that balance exploration and exploitation. Dynamic parameter adjustments guide position updates, boosting adaptability across different optimization stages. Moreover, the algorithm introduces a reward mechanism based on the crowding distance and inverted generational distance (IGD) to maintain Pareto front diversity and distribution, ensuring a strong multi-objective optimization performance. The experimental results show that the algorithm excels at solving the MOAEOSSP, outperforming competing algorithms across several metrics and demonstrating its effectiveness for complex optimization problems. |
---|---|
ISSN: | 1753-8947 1753-8955 |