On absolutely invertibles

In this manuscript, the notion of absolutely invertible was extended consistently from semi-normed rings to the class of general topological rings. Then, the closure of the absolutely invertibles multiplied by a certain element was proved to be contained in the set of topological divisors of the ele...

Full description

Saved in:
Bibliographic Details
Main Authors: Francisco Javier García-Pacheco, María de los Ángeles Moreno-Frías, Marina Murillo-Arcila
Format: Article
Language:English
Published: AIMS Press 2024-12-01
Series:Electronic Research Archive
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/era.2024307
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this manuscript, the notion of absolutely invertible was extended consistently from semi-normed rings to the class of general topological rings. Then, the closure of the absolutely invertibles multiplied by a certain element was proved to be contained in the set of topological divisors of the element. Also, a sufficient condition for the closed unit ball of a complete unital normed ring to become a closed unit neighborhood of zero was found. Finally, two applications to classical operator theory were provided, i.e., every Banach space of dimension of at least $ 2 $ could be equivalently re-normed in such a way that the group of surjective linear isometries was not a normal subgroup of the group of isomorphisms, and every infinite-dimensional Banach space, containing a proper complemented subspace isomorphic to it, could be equivalently re-normed so that the set of surjective linear operators was not dense in the Banach algebra of bounded linear operators.
ISSN:2688-1594