Increasing survival time decreases the cost-effectiveness of using "test & treat to eliminate HIV epidemics

Treating HIV-infected individuals reduces their viral load, consequently increasing their survival time and decreasing their infectivity.It has been proposed that universal testing and treatment (i.e., universal ``test & treat'') could lead to HIV elimination and would be extremely...

Full description

Saved in:
Bibliographic Details
Main Authors: Bradley G. Wagner, Brian J. Coburn, Sally Blower
Format: Article
Language:English
Published: AIMS Press 2013-07-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2013.10.1673
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Treating HIV-infected individuals reduces their viral load, consequently increasing their survival time and decreasing their infectivity.It has been proposed that universal testing and treatment (i.e., universal ``test & treat'') could lead to HIV elimination and would be extremely cost-effective.It is now being debated whether to use a universal ``test and treat'' approach in the ``real-world'' as a prevention strategy to control HIV epidemics.However current modeling predictions of the impact, and cost-effectiveness, of universal ``test & treat'' strategies are based on an unrealistically short survival time for treated individuals.Here we use mathematical modeling and a longer, more realistic, survival time.We model the potential impact of a universal ``test & treat'' strategy in South Africa.Our results show that increasing the length of the survival time on treatment, although beneficial to individuals, reduces the probability of eliminating HIV and decreases the cost-effectiveness of using universal ``test & treat'' strategies.Therefore our results show that individual-level benefits and public health benefits will conflict when using ``test & treat'' strategies to reduce HIV transmission.
ISSN:1551-0018