Infinitely Many Solutions for a Generalized Periodic Boundary Value Problem without the Evenness Assumption
In this paper, we investigate infinitely many solutions for the generalized periodic boundary value problem −x″−B0tx+B1tx=λ∇xVt,xa.e.t∈0,1,x1=Mx0,x′1=Nx′0 under the potential function Vt,x without the evenness assumption and obtain two new existence results by the multiple critical point theorem. Me...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Journal of Function Spaces |
Online Access: | http://dx.doi.org/10.1155/2020/8406719 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we investigate infinitely many solutions for the generalized periodic boundary value problem −x″−B0tx+B1tx=λ∇xVt,xa.e.t∈0,1,x1=Mx0,x′1=Nx′0 under the potential function Vt,x without the evenness assumption and obtain two new existence results by the multiple critical point theorem. Meanwhile, we give two corollaries for the periodic solutions of second-order Hamiltonian systems and an example that illustrates our results. |
---|---|
ISSN: | 2314-8896 2314-8888 |