Bicriterion Optimization for Flow Shop with a Learning Effect Subject to Release Dates
This paper investigates a two-machine flow shop problem with release dates in which the job processing times are variable according to a learning effect. The bicriterion is to minimize the weighted sum of makespan and total completion time subject to release dates. We develop a branch-and-bound (B&a...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2018-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2018/9149510 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper investigates a two-machine flow shop problem with release dates in which the job processing times are variable according to a learning effect. The bicriterion is to minimize the weighted sum of makespan and total completion time subject to release dates. We develop a branch-and-bound (B&B) algorithm to solve the problem by using a dominance property, several lower bounds, and an upper bound to speed up the elimination process of the search tree. We further propose a multiobjective memetic algorithm (MOMA), enhanced by an initialization strategy and a global search strategy, to obtain the Pareto front of the problem. Computational experiments are also carried out to examine the effectiveness and the efficiency of the B&B algorithm and the MOMA algorithm. |
---|---|
ISSN: | 1076-2787 1099-0526 |