Predicting the Pullout Capacity of Small Ground Anchors Using Nonlinear Integrated Computing Techniques

This study investigates predicting the pullout capacity of small ground anchors using nonlinear computing techniques. The input-output prediction model for the nonlinear Hammerstein-Wiener (NHW) and delay inputs for the adaptive neurofuzzy inference system (DANFIS) are developed and utilized to pred...

Full description

Saved in:
Bibliographic Details
Main Authors: Mosbeh R. Kaloop, Jong Wan Hu, Emad Elbeltagi
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2017/2601063
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigates predicting the pullout capacity of small ground anchors using nonlinear computing techniques. The input-output prediction model for the nonlinear Hammerstein-Wiener (NHW) and delay inputs for the adaptive neurofuzzy inference system (DANFIS) are developed and utilized to predict the pullout capacity. The results of the developed models are compared with previous studies that used artificial neural networks and least square support vector machine techniques for the same case study. The in situ data collection and statistical performances are used to evaluate the models performance. Results show that the developed models enhance the precision of predicting the pullout capacity when compared with previous studies. Also, the DANFIS model performance is proven to be better than other models used to detect the pullout capacity of ground anchors.
ISSN:1070-9622
1875-9203