Subrings of I-rings and S-rings

Let R be a non-commutative associative ring with unity 1≠0, a left R-module is said to satisfy property (I) (resp. (S)) if every injective (resp. surjective) endomorphism of M is an automorphism of M. It is well known that every Artinian (resp. Noetherian) module satisfies property (I) (resp. (S)) a...

Full description

Saved in:
Bibliographic Details
Main Author: Mamadou Sanghare
Format: Article
Language:English
Published: Wiley 1997-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171297001130
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832552507968061440
author Mamadou Sanghare
author_facet Mamadou Sanghare
author_sort Mamadou Sanghare
collection DOAJ
description Let R be a non-commutative associative ring with unity 1≠0, a left R-module is said to satisfy property (I) (resp. (S)) if every injective (resp. surjective) endomorphism of M is an automorphism of M. It is well known that every Artinian (resp. Noetherian) module satisfies property (I) (resp. (S)) and that the converse is not true. A ring R is called a left I-ring (resp. S-ring) if every left R-module with property (I) (resp. (S)) is Artinian (resp. Noetherian). It is known that a subring B of a left I-ring (resp. S-ring) R is not in general a left I-ring (resp. S-ring) even if R is a finitely generated B-module, for example the ring M3(K) of 3×3 matrices over a field K is a left I-ring (resp. S-ring), whereas its subring B={[α00βα0γ0α]/α,β,γ∈K} which is a commutative ring with a non-principal Jacobson radical J=K.[000100000]+K.[000000100] is not an I-ring (resp. S-ring) (see [4], theorem 8). We recall that commutative I-rings (resp S-tings) are characterized as those whose modules are a direct sum of cyclic modules, these tings are exactly commutative, Artinian, principal ideal rings (see [1]). Some classes of non-commutative I-rings and S-tings have been studied in [2] and [3]. A ring R is of finite representation type if it is left and right Artinian and has (up to isomorphism) only a finite number of finitely generated indecomposable left modules. In the case of commutative rings or finite-dimensional algebras over an algebraically closed field, the classes of left I-rings, left S-rings and rings of finite representation type are identical (see [1] and [4]). A ring R is said to be a ring with polynomial identity (P. I-ring) if there exists a polynomial f(X1,X2,…,Xn), n≥2, in the non-commuting indeterminates X1,X2,…,Xn, over the center Z of R such that one of the monomials of f of highest total degree has coefficient 1, and f(a1,a2,…,an)=0 for all a1,a2,…,an in R. Throughout this paper all rings considered are associative rings with unity, and by a module M over a ring R we always understand a unitary left R-module. We use MR to emphasize that M is a unitary right R-module.
format Article
id doaj-art-6f7736d032dc41ada39d36b9e7c7e098
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 1997-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-6f7736d032dc41ada39d36b9e7c7e0982025-02-03T05:58:34ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251997-01-0120482582710.1155/S0161171297001130Subrings of I-rings and S-ringsMamadou Sanghare0Département de Mathématiques et Informatiques, Faculté des Sciences et Techniques, UCAD, DAKAR, SenegalLet R be a non-commutative associative ring with unity 1≠0, a left R-module is said to satisfy property (I) (resp. (S)) if every injective (resp. surjective) endomorphism of M is an automorphism of M. It is well known that every Artinian (resp. Noetherian) module satisfies property (I) (resp. (S)) and that the converse is not true. A ring R is called a left I-ring (resp. S-ring) if every left R-module with property (I) (resp. (S)) is Artinian (resp. Noetherian). It is known that a subring B of a left I-ring (resp. S-ring) R is not in general a left I-ring (resp. S-ring) even if R is a finitely generated B-module, for example the ring M3(K) of 3×3 matrices over a field K is a left I-ring (resp. S-ring), whereas its subring B={[α00βα0γ0α]/α,β,γ∈K} which is a commutative ring with a non-principal Jacobson radical J=K.[000100000]+K.[000000100] is not an I-ring (resp. S-ring) (see [4], theorem 8). We recall that commutative I-rings (resp S-tings) are characterized as those whose modules are a direct sum of cyclic modules, these tings are exactly commutative, Artinian, principal ideal rings (see [1]). Some classes of non-commutative I-rings and S-tings have been studied in [2] and [3]. A ring R is of finite representation type if it is left and right Artinian and has (up to isomorphism) only a finite number of finitely generated indecomposable left modules. In the case of commutative rings or finite-dimensional algebras over an algebraically closed field, the classes of left I-rings, left S-rings and rings of finite representation type are identical (see [1] and [4]). A ring R is said to be a ring with polynomial identity (P. I-ring) if there exists a polynomial f(X1,X2,…,Xn), n≥2, in the non-commuting indeterminates X1,X2,…,Xn, over the center Z of R such that one of the monomials of f of highest total degree has coefficient 1, and f(a1,a2,…,an)=0 for all a1,a2,…,an in R. Throughout this paper all rings considered are associative rings with unity, and by a module M over a ring R we always understand a unitary left R-module. We use MR to emphasize that M is a unitary right R-module.http://dx.doi.org/10.1155/S0161171297001130left I-ringleft S-ringring with polynomial idemityring of finite representation type.
spellingShingle Mamadou Sanghare
Subrings of I-rings and S-rings
International Journal of Mathematics and Mathematical Sciences
left I-ring
left S-ring
ring with polynomial idemity
ring of finite representation type.
title Subrings of I-rings and S-rings
title_full Subrings of I-rings and S-rings
title_fullStr Subrings of I-rings and S-rings
title_full_unstemmed Subrings of I-rings and S-rings
title_short Subrings of I-rings and S-rings
title_sort subrings of i rings and s rings
topic left I-ring
left S-ring
ring with polynomial idemity
ring of finite representation type.
url http://dx.doi.org/10.1155/S0161171297001130
work_keys_str_mv AT mamadousanghare subringsofiringsandsrings