An application of queuing theory to SIS and SEIS epidemic models

In this work we consider every individual of a population to be a server whose state can be either busy (infected) or idle (susceptible). This server approach allows to consider a general distribution for the duration of the infectious state, instead of being restricted to exponential distributions....

Full description

Saved in:
Bibliographic Details
Main Authors: Carlos M. Hernández-Suárez, Carlos Castillo-Chavez, Osval Montesinos López, Karla Hernández-Cuevas
Format: Article
Language:English
Published: AIMS Press 2010-09-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2010.7.809
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832590190072299520
author Carlos M. Hernández-Suárez
Carlos Castillo-Chavez
Osval Montesinos López
Karla Hernández-Cuevas
author_facet Carlos M. Hernández-Suárez
Carlos Castillo-Chavez
Osval Montesinos López
Karla Hernández-Cuevas
author_sort Carlos M. Hernández-Suárez
collection DOAJ
description In this work we consider every individual of a population to be a server whose state can be either busy (infected) or idle (susceptible). This server approach allows to consider a general distribution for the duration of the infectious state, instead of being restricted to exponential distributions. In order to achieve this we first derive new approximations to quasistationary distribution (QSD) of SIS (Susceptible- Infected- Susceptible) and SEIS (Susceptible- Latent- Infected- Susceptible) stochastic epidemic models. We give an expression that relates the basic reproductive number, $R_0$ and the server utilization, $\rho$.
format Article
id doaj-art-6ec9a6ea348849e5a41d9d172b8e6635
institution Kabale University
issn 1551-0018
language English
publishDate 2010-09-01
publisher AIMS Press
record_format Article
series Mathematical Biosciences and Engineering
spelling doaj-art-6ec9a6ea348849e5a41d9d172b8e66352025-01-24T02:00:58ZengAIMS PressMathematical Biosciences and Engineering1551-00182010-09-017480982310.3934/mbe.2010.7.809An application of queuing theory to SIS and SEIS epidemic modelsCarlos M. Hernández-Suárez0Carlos Castillo-Chavez1Osval Montesinos López2Karla Hernández-Cuevas3Facultad de Ciencias, Universidad de Colima, Apdo. Postal 25, Colima, ColimaFacultad de Ciencias, Universidad de Colima, Apdo. Postal 25, Colima, ColimaFacultad de Ciencias, Universidad de Colima, Apdo. Postal 25, Colima, ColimaFacultad de Ciencias, Universidad de Colima, Apdo. Postal 25, Colima, ColimaIn this work we consider every individual of a population to be a server whose state can be either busy (infected) or idle (susceptible). This server approach allows to consider a general distribution for the duration of the infectious state, instead of being restricted to exponential distributions. In order to achieve this we first derive new approximations to quasistationary distribution (QSD) of SIS (Susceptible- Infected- Susceptible) and SEIS (Susceptible- Latent- Infected- Susceptible) stochastic epidemic models. We give an expression that relates the basic reproductive number, $R_0$ and the server utilization, $\rho$.https://www.aimspress.com/article/doi/10.3934/mbe.2010.7.809sis; seis; queuing theory; $r_{0}$; basic reproductive number; stochastic epidemic models.
spellingShingle Carlos M. Hernández-Suárez
Carlos Castillo-Chavez
Osval Montesinos López
Karla Hernández-Cuevas
An application of queuing theory to SIS and SEIS epidemic models
Mathematical Biosciences and Engineering
sis; seis; queuing theory; $r_{0}$; basic reproductive number; stochastic epidemic models.
title An application of queuing theory to SIS and SEIS epidemic models
title_full An application of queuing theory to SIS and SEIS epidemic models
title_fullStr An application of queuing theory to SIS and SEIS epidemic models
title_full_unstemmed An application of queuing theory to SIS and SEIS epidemic models
title_short An application of queuing theory to SIS and SEIS epidemic models
title_sort application of queuing theory to sis and seis epidemic models
topic sis; seis; queuing theory; $r_{0}$; basic reproductive number; stochastic epidemic models.
url https://www.aimspress.com/article/doi/10.3934/mbe.2010.7.809
work_keys_str_mv AT carlosmhernandezsuarez anapplicationofqueuingtheorytosisandseisepidemicmodels
AT carloscastillochavez anapplicationofqueuingtheorytosisandseisepidemicmodels
AT osvalmontesinoslopez anapplicationofqueuingtheorytosisandseisepidemicmodels
AT karlahernandezcuevas anapplicationofqueuingtheorytosisandseisepidemicmodels
AT carlosmhernandezsuarez applicationofqueuingtheorytosisandseisepidemicmodels
AT carloscastillochavez applicationofqueuingtheorytosisandseisepidemicmodels
AT osvalmontesinoslopez applicationofqueuingtheorytosisandseisepidemicmodels
AT karlahernandezcuevas applicationofqueuingtheorytosisandseisepidemicmodels