An application of queuing theory to SIS and SEIS epidemic models
In this work we consider every individual of a population to be a server whose state can be either busy (infected) or idle (susceptible). This server approach allows to consider a general distribution for the duration of the infectious state, instead of being restricted to exponential distributions....
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2010-09-01
|
Series: | Mathematical Biosciences and Engineering |
Subjects: | |
Online Access: | https://www.aimspress.com/article/doi/10.3934/mbe.2010.7.809 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work we consider every individual of a population to be a server whose state can be either busy (infected) or idle (susceptible). This server approach allows to consider a general distribution for the duration of the infectious state, instead of being restricted to exponential distributions. In order to achieve this we first derive new approximations to quasistationary distribution (QSD) of SIS (Susceptible- Infected- Susceptible) and SEIS (Susceptible- Latent- Infected- Susceptible) stochastic epidemic models. We give an expression that relates the basic reproductive number, $R_0$ and the server utilization, $\rho$. |
---|---|
ISSN: | 1551-0018 |