Sensitivity Analysis of Viscoelastic Structures

In the context of control of sound and vibration of mechanical systems, the use of viscoelastic materials has been regarded as a convenient strategy in many types of industrial applications. Numerical models based on finite element discretization have been frequently used in the analysis and design...

Full description

Saved in:
Bibliographic Details
Main Authors: A.M.G. de Lima, M.H. Stoppa, D.A. Rade, V. Steffen Jr.
Format: Article
Language:English
Published: Wiley 2006-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2006/917967
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the context of control of sound and vibration of mechanical systems, the use of viscoelastic materials has been regarded as a convenient strategy in many types of industrial applications. Numerical models based on finite element discretization have been frequently used in the analysis and design of complex structural systems incorporating viscoelastic materials. Such models must account for the typical dependence of the viscoelastic characteristics on operational and environmental parameters, such as frequency and temperature. In many applications, including optimal design and model updating, sensitivity analysis based on numerical models is a very usefull tool. In this paper, the formulation of first-order sensitivity analysis of complex frequency response functions is developed for plates treated with passive constraining damping layers, considering geometrical characteristics, such as the thicknesses of the multi-layer components, as design variables. Also, the sensitivity of the frequency response functions with respect to temperature is introduced. As an example, response derivatives are calculated for a three-layer sandwich plate and the results obtained are compared with first-order finite-difference approximations.
ISSN:1070-9622
1875-9203