A Dictionary Learning Method with Total Generalized Variation for MRI Reconstruction

Reconstructing images from their noisy and incomplete measurements is always a challenge especially for medical MR image with important details and features. This work proposes a novel dictionary learning model that integrates two sparse regularization methods: the total generalized variation (TGV)...

Full description

Saved in:
Bibliographic Details
Main Authors: Hongyang Lu, Jingbo Wei, Qiegen Liu, Yuhao Wang, Xiaohua Deng
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:International Journal of Biomedical Imaging
Online Access:http://dx.doi.org/10.1155/2016/7512471
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reconstructing images from their noisy and incomplete measurements is always a challenge especially for medical MR image with important details and features. This work proposes a novel dictionary learning model that integrates two sparse regularization methods: the total generalized variation (TGV) approach and adaptive dictionary learning (DL). In the proposed method, the TGV selectively regularizes different image regions at different levels to avoid oil painting artifacts largely. At the same time, the dictionary learning adaptively represents the image features sparsely and effectively recovers details of images. The proposed model is solved by variable splitting technique and the alternating direction method of multiplier. Extensive simulation experimental results demonstrate that the proposed method consistently recovers MR images efficiently and outperforms the current state-of-the-art approaches in terms of higher PSNR and lower HFEN values.
ISSN:1687-4188
1687-4196