An Oseen Two-Level Stabilized Mixed Finite-Element Method for the 2D/3D Stationary Navier-Stokes Equations
We investigate an Oseen two-level stabilized finite-element method based on the local pressure projection for the 2D/3D steady Navier-Stokes equations by the lowest order conforming finite-element pairs (i.e., Q1−P0 and P1−P0). Firstly, in contrast to other stabilized methods, they are parameter fre...
Saved in:
Main Authors: | Aiwen Wang, Xin Zhao, Peihua Qin, Dongxiu Xie |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2012-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2012/520818 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Stabilized Multiscale Nonconforming Finite Element Method for the Stationary Navier-Stokes Equations
by: Tong Zhang, et al.
Published: (2012-01-01) -
Stability Analysis of the Crank-Nicolson Finite Element Method for the Navier-Stokes Equations Driven by Slip Boundary Conditions
by: M. Mbehou, et al.
Published: (2022-01-01) -
Analytical Solution to 1D Compressible Navier-Stokes Equations
by: Changsheng Dou, et al.
Published: (2021-01-01) -
Navier-Stokes Equations with Potentials
by: Adriana-Ioana Lefter
Published: (2007-01-01) -
Decoupling the Stationary Navier-Stokes-Darcy System with the Beavers-Joseph-Saffman Interface Condition
by: Yong Cao, et al.
Published: (2013-01-01)