Orlicz Mean Dual Affine Quermassintegrals

Our main aim is to generalize the mean dual affine quermassintegrals to the Orlicz space. Under the framework of dual Orlicz-Brunn-Minkowski theory, we introduce a new affine geometric quantity by calculating the first Orlicz variation of the mean dual affine quermassintegrals and call it the Orlicz...

Full description

Saved in:
Bibliographic Details
Main Authors: Chang-Jian Zhao, Wing-Sum Cheung
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2018/8123924
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832552364127551488
author Chang-Jian Zhao
Wing-Sum Cheung
author_facet Chang-Jian Zhao
Wing-Sum Cheung
author_sort Chang-Jian Zhao
collection DOAJ
description Our main aim is to generalize the mean dual affine quermassintegrals to the Orlicz space. Under the framework of dual Orlicz-Brunn-Minkowski theory, we introduce a new affine geometric quantity by calculating the first Orlicz variation of the mean dual affine quermassintegrals and call it the Orlicz mean dual affine quermassintegral. The fundamental notions and conclusions of the mean dual affine quermassintegrals and the Minkowski and Brunn-Minkowski inequalities for them are extended to an Orlicz setting. The related concepts and inequalities of dual Orlicz mixed volumes are also included in our conclusions. The new Orlicz isoperimetric inequalities in special case yield the Lp-dual Minkowski inequality and Brunn-Minkowski inequality for the mean dual affine quermassintegrals, which also imply the dual Orlicz-Minkowski inequality and dual Orlicz-Brunn-Minkowski inequality.
format Article
id doaj-art-6e5600679b5647fbbd3c92ada1e887f2
institution Kabale University
issn 2314-8896
2314-8888
language English
publishDate 2018-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces
spelling doaj-art-6e5600679b5647fbbd3c92ada1e887f22025-02-03T05:58:53ZengWileyJournal of Function Spaces2314-88962314-88882018-01-01201810.1155/2018/81239248123924Orlicz Mean Dual Affine QuermassintegralsChang-Jian Zhao0Wing-Sum Cheung1Department of Mathematics, China Jiliang University, Hangzhou 310018, ChinaDepartment of Mathematics, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong KongOur main aim is to generalize the mean dual affine quermassintegrals to the Orlicz space. Under the framework of dual Orlicz-Brunn-Minkowski theory, we introduce a new affine geometric quantity by calculating the first Orlicz variation of the mean dual affine quermassintegrals and call it the Orlicz mean dual affine quermassintegral. The fundamental notions and conclusions of the mean dual affine quermassintegrals and the Minkowski and Brunn-Minkowski inequalities for them are extended to an Orlicz setting. The related concepts and inequalities of dual Orlicz mixed volumes are also included in our conclusions. The new Orlicz isoperimetric inequalities in special case yield the Lp-dual Minkowski inequality and Brunn-Minkowski inequality for the mean dual affine quermassintegrals, which also imply the dual Orlicz-Minkowski inequality and dual Orlicz-Brunn-Minkowski inequality.http://dx.doi.org/10.1155/2018/8123924
spellingShingle Chang-Jian Zhao
Wing-Sum Cheung
Orlicz Mean Dual Affine Quermassintegrals
Journal of Function Spaces
title Orlicz Mean Dual Affine Quermassintegrals
title_full Orlicz Mean Dual Affine Quermassintegrals
title_fullStr Orlicz Mean Dual Affine Quermassintegrals
title_full_unstemmed Orlicz Mean Dual Affine Quermassintegrals
title_short Orlicz Mean Dual Affine Quermassintegrals
title_sort orlicz mean dual affine quermassintegrals
url http://dx.doi.org/10.1155/2018/8123924
work_keys_str_mv AT changjianzhao orliczmeandualaffinequermassintegrals
AT wingsumcheung orliczmeandualaffinequermassintegrals