Investigation of the Impact of Two Types of Epoxidized Vietnam Rubber Seed Oils on the Properties of Polylactic Acid

To minimize the brittleness of polylactic acid (PLA), the epoxidized rubber seed oils (ERO) or epoxidized ester rubber seed oils (EERO) are blended with PLA. The mechanical properties of ERO bioblend are higher than that of EERO bioblend and significantly improved compared to that of the PLA sample....

Full description

Saved in:
Bibliographic Details
Main Authors: Nguyen Thi Thuy, Pham Ngoc Lan
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Advances in Polymer Technology
Online Access:http://dx.doi.org/10.1155/2021/6698918
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832546880556367872
author Nguyen Thi Thuy
Pham Ngoc Lan
author_facet Nguyen Thi Thuy
Pham Ngoc Lan
author_sort Nguyen Thi Thuy
collection DOAJ
description To minimize the brittleness of polylactic acid (PLA), the epoxidized rubber seed oils (ERO) or epoxidized ester rubber seed oils (EERO) are blended with PLA. The mechanical properties of ERO bioblend are higher than that of EERO bioblend and significantly improved compared to that of the PLA sample. Elongation at break is increased by 9.1 times, and impact strength and tensile toughness improved by 139% and 1370%, respectively. The morphological study showed the microdroplets of epoxidized oils distributed in the ERO bioblend are much smaller than those in the EERO bioblend. This means that the ERO is better compatible with PLA, and both ERO and EERO are partially miscible with PLA. This compatibility is confirmed by the decrease in the glass transition temperature, Tg, from 65.7 to 60.5°C. The TGA analysis shows a sharp increase in an initial decomposition temperature (from 261.8 to 311.9°C) meaning an improvement in thermal properties. The NMR analysis proves that the epoxidized vegetable oils are linked to PLA chains, so both the melt flow index and an acid value of ERO or EERO bioblend decrease while the thermal stability is improved. The NMR peak area of some signals shows that the ERO is more attached to PLA, proving better compatibility of ERO with PLA, resulting in higher mechanical properties of ERO bioblend. The plasticizing effect of plasticizers is not dependent on the oxygen-oxirane content of the epoxidized oil but is strongly influenced by the acid value. Overall results show that both ERO and EERO can be used as a biodegradable, renewable plasticizer to replace petroleum-based plasticizers for PLA. In addition, the successful modification of PLA by using ERO or EERO promotes the use of this polymer as a potential material for researchers working on PLA applications.
format Article
id doaj-art-6e3406a327a64153a23f8788918b8284
institution Kabale University
issn 0730-6679
1098-2329
language English
publishDate 2021-01-01
publisher Wiley
record_format Article
series Advances in Polymer Technology
spelling doaj-art-6e3406a327a64153a23f8788918b82842025-02-03T06:46:42ZengWileyAdvances in Polymer Technology0730-66791098-23292021-01-01202110.1155/2021/66989186698918Investigation of the Impact of Two Types of Epoxidized Vietnam Rubber Seed Oils on the Properties of Polylactic AcidNguyen Thi Thuy0Pham Ngoc Lan1Hanoi University of Science and Technology, Hanoi 10000, VietnamVNU-University of Science, Hanoi 10000, VietnamTo minimize the brittleness of polylactic acid (PLA), the epoxidized rubber seed oils (ERO) or epoxidized ester rubber seed oils (EERO) are blended with PLA. The mechanical properties of ERO bioblend are higher than that of EERO bioblend and significantly improved compared to that of the PLA sample. Elongation at break is increased by 9.1 times, and impact strength and tensile toughness improved by 139% and 1370%, respectively. The morphological study showed the microdroplets of epoxidized oils distributed in the ERO bioblend are much smaller than those in the EERO bioblend. This means that the ERO is better compatible with PLA, and both ERO and EERO are partially miscible with PLA. This compatibility is confirmed by the decrease in the glass transition temperature, Tg, from 65.7 to 60.5°C. The TGA analysis shows a sharp increase in an initial decomposition temperature (from 261.8 to 311.9°C) meaning an improvement in thermal properties. The NMR analysis proves that the epoxidized vegetable oils are linked to PLA chains, so both the melt flow index and an acid value of ERO or EERO bioblend decrease while the thermal stability is improved. The NMR peak area of some signals shows that the ERO is more attached to PLA, proving better compatibility of ERO with PLA, resulting in higher mechanical properties of ERO bioblend. The plasticizing effect of plasticizers is not dependent on the oxygen-oxirane content of the epoxidized oil but is strongly influenced by the acid value. Overall results show that both ERO and EERO can be used as a biodegradable, renewable plasticizer to replace petroleum-based plasticizers for PLA. In addition, the successful modification of PLA by using ERO or EERO promotes the use of this polymer as a potential material for researchers working on PLA applications.http://dx.doi.org/10.1155/2021/6698918
spellingShingle Nguyen Thi Thuy
Pham Ngoc Lan
Investigation of the Impact of Two Types of Epoxidized Vietnam Rubber Seed Oils on the Properties of Polylactic Acid
Advances in Polymer Technology
title Investigation of the Impact of Two Types of Epoxidized Vietnam Rubber Seed Oils on the Properties of Polylactic Acid
title_full Investigation of the Impact of Two Types of Epoxidized Vietnam Rubber Seed Oils on the Properties of Polylactic Acid
title_fullStr Investigation of the Impact of Two Types of Epoxidized Vietnam Rubber Seed Oils on the Properties of Polylactic Acid
title_full_unstemmed Investigation of the Impact of Two Types of Epoxidized Vietnam Rubber Seed Oils on the Properties of Polylactic Acid
title_short Investigation of the Impact of Two Types of Epoxidized Vietnam Rubber Seed Oils on the Properties of Polylactic Acid
title_sort investigation of the impact of two types of epoxidized vietnam rubber seed oils on the properties of polylactic acid
url http://dx.doi.org/10.1155/2021/6698918
work_keys_str_mv AT nguyenthithuy investigationoftheimpactoftwotypesofepoxidizedvietnamrubberseedoilsonthepropertiesofpolylacticacid
AT phamngoclan investigationoftheimpactoftwotypesofepoxidizedvietnamrubberseedoilsonthepropertiesofpolylacticacid