Proteomic identification of the UDP-GlcNAc: PI α1-6 GlcNAc-transferase subunits of the glycosylphosphatidylinositol biosynthetic pathway of Trypanosoma brucei.

The first step of glycosylphosphatidylinositol (GPI) anchor biosynthesis in all eukaryotes is the addition of N-acetylglucosamine (GlcNAc) to phosphatidylinositol (PI) which is catalysed by a UDP-GlcNAc: PI α1-6 GlcNAc-transferase, also known as GPI GnT. This enzyme has been shown to be a complex of...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhe Ji, Michele Tinti, Michael A J Ferguson
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2021-01-01
Series:PLoS ONE
Online Access:https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0244699&type=printable
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850240572915187712
author Zhe Ji
Michele Tinti
Michael A J Ferguson
author_facet Zhe Ji
Michele Tinti
Michael A J Ferguson
author_sort Zhe Ji
collection DOAJ
description The first step of glycosylphosphatidylinositol (GPI) anchor biosynthesis in all eukaryotes is the addition of N-acetylglucosamine (GlcNAc) to phosphatidylinositol (PI) which is catalysed by a UDP-GlcNAc: PI α1-6 GlcNAc-transferase, also known as GPI GnT. This enzyme has been shown to be a complex of seven subunits in mammalian cells and a similar complex of six homologous subunits has been postulated in yeast. Homologs of these mammalian and yeast subunits were identified in the Trypanosoma brucei predicted protein database. The putative catalytic subunit of the T. brucei complex, TbGPI3, was epitope tagged with three consecutive c-Myc sequences at its C-terminus. Immunoprecipitation of TbGPI3-3Myc followed by native polyacrylamide gel electrophoresis and anti-Myc Western blot showed that it is present in a ~240 kDa complex. Label-free quantitative proteomics were performed to compare anti-Myc pull-downs from lysates of TbGPI-3Myc expressing and wild type cell lines. TbGPI3-3Myc was the most highly enriched protein in the TbGPI3-3Myc lysate pull-down and the expected partner proteins TbGPI15, TbGPI19, TbGPI2, TbGPI1 and TbERI1 were also identified with significant enrichment. Our proteomics data also suggest that an Arv1-like protein (TbArv1) is a subunit of the T. brucei complex. Yeast and mammalian Arv1 have been previously implicated in GPI biosynthesis, but here we present the first experimental evidence for physical association of Arv1 with GPI biosynthetic machinery. A putative E2-ligase has also been tentatively identified as part of the T. brucei UDP-GlcNAc: PI α1-6 GlcNAc-transferase complex.
format Article
id doaj-art-6dfd5616a3fb4880b3a4f072c0780430
institution OA Journals
issn 1932-6203
language English
publishDate 2021-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj-art-6dfd5616a3fb4880b3a4f072c07804302025-08-20T02:00:50ZengPublic Library of Science (PLoS)PLoS ONE1932-62032021-01-01163e024469910.1371/journal.pone.0244699Proteomic identification of the UDP-GlcNAc: PI α1-6 GlcNAc-transferase subunits of the glycosylphosphatidylinositol biosynthetic pathway of Trypanosoma brucei.Zhe JiMichele TintiMichael A J FergusonThe first step of glycosylphosphatidylinositol (GPI) anchor biosynthesis in all eukaryotes is the addition of N-acetylglucosamine (GlcNAc) to phosphatidylinositol (PI) which is catalysed by a UDP-GlcNAc: PI α1-6 GlcNAc-transferase, also known as GPI GnT. This enzyme has been shown to be a complex of seven subunits in mammalian cells and a similar complex of six homologous subunits has been postulated in yeast. Homologs of these mammalian and yeast subunits were identified in the Trypanosoma brucei predicted protein database. The putative catalytic subunit of the T. brucei complex, TbGPI3, was epitope tagged with three consecutive c-Myc sequences at its C-terminus. Immunoprecipitation of TbGPI3-3Myc followed by native polyacrylamide gel electrophoresis and anti-Myc Western blot showed that it is present in a ~240 kDa complex. Label-free quantitative proteomics were performed to compare anti-Myc pull-downs from lysates of TbGPI-3Myc expressing and wild type cell lines. TbGPI3-3Myc was the most highly enriched protein in the TbGPI3-3Myc lysate pull-down and the expected partner proteins TbGPI15, TbGPI19, TbGPI2, TbGPI1 and TbERI1 were also identified with significant enrichment. Our proteomics data also suggest that an Arv1-like protein (TbArv1) is a subunit of the T. brucei complex. Yeast and mammalian Arv1 have been previously implicated in GPI biosynthesis, but here we present the first experimental evidence for physical association of Arv1 with GPI biosynthetic machinery. A putative E2-ligase has also been tentatively identified as part of the T. brucei UDP-GlcNAc: PI α1-6 GlcNAc-transferase complex.https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0244699&type=printable
spellingShingle Zhe Ji
Michele Tinti
Michael A J Ferguson
Proteomic identification of the UDP-GlcNAc: PI α1-6 GlcNAc-transferase subunits of the glycosylphosphatidylinositol biosynthetic pathway of Trypanosoma brucei.
PLoS ONE
title Proteomic identification of the UDP-GlcNAc: PI α1-6 GlcNAc-transferase subunits of the glycosylphosphatidylinositol biosynthetic pathway of Trypanosoma brucei.
title_full Proteomic identification of the UDP-GlcNAc: PI α1-6 GlcNAc-transferase subunits of the glycosylphosphatidylinositol biosynthetic pathway of Trypanosoma brucei.
title_fullStr Proteomic identification of the UDP-GlcNAc: PI α1-6 GlcNAc-transferase subunits of the glycosylphosphatidylinositol biosynthetic pathway of Trypanosoma brucei.
title_full_unstemmed Proteomic identification of the UDP-GlcNAc: PI α1-6 GlcNAc-transferase subunits of the glycosylphosphatidylinositol biosynthetic pathway of Trypanosoma brucei.
title_short Proteomic identification of the UDP-GlcNAc: PI α1-6 GlcNAc-transferase subunits of the glycosylphosphatidylinositol biosynthetic pathway of Trypanosoma brucei.
title_sort proteomic identification of the udp glcnac pi α1 6 glcnac transferase subunits of the glycosylphosphatidylinositol biosynthetic pathway of trypanosoma brucei
url https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0244699&type=printable
work_keys_str_mv AT zheji proteomicidentificationoftheudpglcnacpia16glcnactransferasesubunitsoftheglycosylphosphatidylinositolbiosyntheticpathwayoftrypanosomabrucei
AT micheletinti proteomicidentificationoftheudpglcnacpia16glcnactransferasesubunitsoftheglycosylphosphatidylinositolbiosyntheticpathwayoftrypanosomabrucei
AT michaelajferguson proteomicidentificationoftheudpglcnacpia16glcnactransferasesubunitsoftheglycosylphosphatidylinositolbiosyntheticpathwayoftrypanosomabrucei