Diesters Biolubricant Base Oil: Synthesis, Optimization, Characterization, and Physicochemical Characteristics

Diesters biolubricant base oil, oleyl 9(12)-hydroxy-10(13)-oleioxy-12(9)-octadecanoate (OLHYOOD) was synthesized based on the esterification reaction of 9,12-hydroxy-10,13-oleioxy-12-octadecanoic acid (HYOOA) with oleyl alcohol (OL) and catalyzed by sulfuric acid (SA). Optimum conditions of the expe...

Full description

Saved in:
Bibliographic Details
Main Authors: Jumat Salimon, Nadia Salih, Bashar Mudhaffar Abdullah
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:International Journal of Chemical Engineering
Online Access:http://dx.doi.org/10.1155/2012/896598
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Diesters biolubricant base oil, oleyl 9(12)-hydroxy-10(13)-oleioxy-12(9)-octadecanoate (OLHYOOD) was synthesized based on the esterification reaction of 9,12-hydroxy-10,13-oleioxy-12-octadecanoic acid (HYOOA) with oleyl alcohol (OL) and catalyzed by sulfuric acid (SA). Optimum conditions of the experiment to obtain high yield % of OLHYOOD were predicted at ratio of OL/HYOOA of 2 : 1 mol/mol, ratio of SA/HYOOA of 0.7 : 1 mol/mol, reaction temperature 110°C, and 7 h of reaction time. At this condition, the yield of OLHYOOD was 88.7%. Disappearance of carboxylic acid (C=O) peak has been observed by FTIR with appearance of ester (C=O) peak at 1738 cm-1. 13C, and 1H NMR spectra analyses confirmed the result of OLHYOOD with the appearance of carbon-ester (C=O) chemical shift at 173.93 ppm and at 4.05 ppm for 13C and 1H NMR, respectively. The physicochemical characteristics of the OLHYOOD were also determined, which showed improved low temperature properties (PP) −62°C, viscosity index (VI) at 192 and also increased oxidative stability (OT) up to 215.24°C.
ISSN:1687-806X
1687-8078