Drug Target Identification and Elucidation of Natural Inhibitors for : An Study

Environmental microbes like Bordetella petrii has been established as a causative agent for various infectious diseases in human. Again, development of drug resistance in B. petrii challenged to combat against the infection. Identification of potential drug target and proposing a novel lead compound...

Full description

Saved in:
Bibliographic Details
Main Authors: Surya Narayan Rath, Manisha Ray, Animesh Pattnaik, Sukanta Kumar Pradhan
Format: Article
Language:English
Published: BioMed Central 2016-12-01
Series:Genomics & Informatics
Subjects:
Online Access:http://genominfo.org/upload/pdf/gni-14-241.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Environmental microbes like Bordetella petrii has been established as a causative agent for various infectious diseases in human. Again, development of drug resistance in B. petrii challenged to combat against the infection. Identification of potential drug target and proposing a novel lead compound against the pathogen has a great aid and value. In this study, bioinformatics tools and technology have been applied to suggest a potential drug target by screening the proteome information of B. petrii DSM 12804 (accession No. PRJNA28135) from genome database of National Centre for Biotechnology information. In this regards, the inhibitory effect of nine natural compounds like ajoene (Allium sativum), allicin (A. sativum), cinnamaldehyde (Cinnamomum cassia), curcumin (Curcuma longa), gallotannin (active component of green tea and red wine), isoorientin (Anthopterus wardii), isovitexin (A. wardii), neral (Melissa officinalis), and vitexin (A. wardii) have been acknowledged with anti-bacterial properties and hence tested against identified drug target of B. petrii by implicating computational approach. The in silico studies revealed the hypothesis that lpxD could be a potential drug target and with recommendation of a strong inhibitory effect of selected natural compounds against infection caused due to B. petrii, would be further validated through in vitro experiments.
ISSN:1598-866X
2234-0742