Binder Free SnO2-CNT Composite as Anode Material for Li-Ion Battery

Tin dioxide-carbon nanotube (SnO2-CNT) composite films were synthesized on copper substrates by a one-step process using hot filament chemical vapor deposition (HFCVD) with methane gas (CH4) as the carbon source. The composite structural properties enhance the surface-to-volume ratio of SnO2 demonst...

Full description

Saved in:
Bibliographic Details
Main Authors: Dionne Hernandez, Frank Mendoza, Emmanuel Febus, Brad R. Weiner, Gerardo Morell
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Journal of Nanotechnology
Online Access:http://dx.doi.org/10.1155/2014/381273
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tin dioxide-carbon nanotube (SnO2-CNT) composite films were synthesized on copper substrates by a one-step process using hot filament chemical vapor deposition (HFCVD) with methane gas (CH4) as the carbon source. The composite structural properties enhance the surface-to-volume ratio of SnO2 demonstrating a desirable electrochemical performance for a lithium-ion battery anode. The SnO2 and CNT interactions were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared-attenuated total reflectance (ATR-FTIR) spectroscopy. Comprehensive analysis of the structural, chemical, and electrochemical properties reveals that the material consists of self-assembled and highly dispersed SnO2 nanoparticles in CNT matrix. The process employed to develop this SnO2-CNT composite film presents a cost effective and facile way to develop anode materials for Li-ion battery technology.
ISSN:1687-9503
1687-9511