Multiresolution Analysis Applied to the Monge-Kantorovich Problem

We give a scheme of approximation of the MK problem based on the symmetries of the underlying spaces. We take a Haar type MRA constructed according to the geometry of our spaces. Thus, applying the Haar type MRA based on symmetries to the MK problem, we obtain a sequence of transportation problem th...

Full description

Saved in:
Bibliographic Details
Main Authors: Armando Sánchez-Nungaray, Carlos González-Flores, Raquiel R. López-Martínez
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2018/1764175
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832556956536012800
author Armando Sánchez-Nungaray
Carlos González-Flores
Raquiel R. López-Martínez
author_facet Armando Sánchez-Nungaray
Carlos González-Flores
Raquiel R. López-Martínez
author_sort Armando Sánchez-Nungaray
collection DOAJ
description We give a scheme of approximation of the MK problem based on the symmetries of the underlying spaces. We take a Haar type MRA constructed according to the geometry of our spaces. Thus, applying the Haar type MRA based on symmetries to the MK problem, we obtain a sequence of transportation problem that approximates the original MK problem for each of MRA. Moreover, the optimal solutions of each level solution converge in the weak sense to the optimal solution of original problem.
format Article
id doaj-art-6d24b7afbc8e4023a43c0d8ef34caa3a
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2018-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-6d24b7afbc8e4023a43c0d8ef34caa3a2025-02-03T05:43:56ZengWileyAbstract and Applied Analysis1085-33751687-04092018-01-01201810.1155/2018/17641751764175Multiresolution Analysis Applied to the Monge-Kantorovich ProblemArmando Sánchez-Nungaray0Carlos González-Flores1Raquiel R. López-Martínez2Facultad de Matemáticas, Universidad Veracruzana, Xalapa, VER, MexicoEscuela Superior de Ingeniera Mecánica y Eléctrica, Instituto Politécnico Nacional, Mexico City, MexicoFacultad de Matemáticas, Universidad Veracruzana, Xalapa, VER, MexicoWe give a scheme of approximation of the MK problem based on the symmetries of the underlying spaces. We take a Haar type MRA constructed according to the geometry of our spaces. Thus, applying the Haar type MRA based on symmetries to the MK problem, we obtain a sequence of transportation problem that approximates the original MK problem for each of MRA. Moreover, the optimal solutions of each level solution converge in the weak sense to the optimal solution of original problem.http://dx.doi.org/10.1155/2018/1764175
spellingShingle Armando Sánchez-Nungaray
Carlos González-Flores
Raquiel R. López-Martínez
Multiresolution Analysis Applied to the Monge-Kantorovich Problem
Abstract and Applied Analysis
title Multiresolution Analysis Applied to the Monge-Kantorovich Problem
title_full Multiresolution Analysis Applied to the Monge-Kantorovich Problem
title_fullStr Multiresolution Analysis Applied to the Monge-Kantorovich Problem
title_full_unstemmed Multiresolution Analysis Applied to the Monge-Kantorovich Problem
title_short Multiresolution Analysis Applied to the Monge-Kantorovich Problem
title_sort multiresolution analysis applied to the monge kantorovich problem
url http://dx.doi.org/10.1155/2018/1764175
work_keys_str_mv AT armandosancheznungaray multiresolutionanalysisappliedtothemongekantorovichproblem
AT carlosgonzalezflores multiresolutionanalysisappliedtothemongekantorovichproblem
AT raquielrlopezmartinez multiresolutionanalysisappliedtothemongekantorovichproblem