Dual-Wavelength Polarization Multifunction Metalens Based on Spatial Multiplexing
Technological advancements have enabled the active control of electromagnetic waves. Metalenses, known for their precision in wavefront shaping and functional versatility, represent a breakthrough in optical modulation. This study addresses the challenge of achieving dual-wavelength multifunctionali...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Photonics |
Subjects: | |
Online Access: | https://www.mdpi.com/2304-6732/12/1/61 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Technological advancements have enabled the active control of electromagnetic waves. Metalenses, known for their precision in wavefront shaping and functional versatility, represent a breakthrough in optical modulation. This study addresses the challenge of achieving dual-wavelength multifunctionality in metalens design. We developed and experimentally validated metalenses with polarization dual-function multiplexing at discrete mid-wave infrared wavelengths, demonstrating high phase fidelity and functional versatility. In addition, the proposed design method was extended to long-wave infrared wavelengths, showcasing its adaptability to different application scenarios. The application of spatial multiplexing significantly enhanced the performance of the metalenses, providing a promising solution for efficient and compact optoelectronic devices. |
---|---|
ISSN: | 2304-6732 |