Sur la géométrie des ensembles de nœuds pour l’interpolation de Lagrange en plusieurs variables
Given a valid set $X$ of interpolation points for Lagrange interpolation of degree $d$ in $n$ variables we study how many subsets of $X$ can be chosen in order to obtain a valid set of interpolation points of degree $d-1$. This leads to an estimate of the number of Newton structures for $X$ which, i...
Saved in:
Main Author: | Bertrand, François |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2023-03-01
|
Series: | Comptes Rendus. Mathématique |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.436/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Inégalité de Markov en plusieurs variables
by: Wiesław Pleśniak
Published: (2006-01-01) -
A method of summability of Lagrange interpolation
by: Detlef H. Mache
Published: (1994-01-01) -
Lagrange geometry on tangent manifolds
by: Izu Vaisman
Published: (2003-01-01) -
About Nodal Systems for Lagrange Interpolation on the Circle
by: E. Berriochoa, et al.
Published: (2012-01-01) -
Lagrange Multivariate Polynomial Interpolation: A Random Algorithmic Approach
by: A. Essanhaji, et al.
Published: (2022-01-01)