Some estimates of multilinear operators on tent spaces
Let $ 0 < \alpha < mn $ and $ 0 < r, q < \infty $. In this paper, we obtain the boundedness of some multilinear operators by establishing pointwise inequalities and applying extrapolation methods on tent spaces $ T_{r}^{q}(\mathbb{R}_{+}^{n+1}) $, where these multilinear operators includ...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2024-10-01
|
Series: | Communications in Analysis and Mechanics |
Subjects: | |
Online Access: | https://www.aimspress.com/article/doi/10.3934/cam.2024031 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832590749481304064 |
---|---|
author | Heng Yang Jiang Zhou |
author_facet | Heng Yang Jiang Zhou |
author_sort | Heng Yang |
collection | DOAJ |
description | Let $ 0 < \alpha < mn $ and $ 0 < r, q < \infty $. In this paper, we obtain the boundedness of some multilinear operators by establishing pointwise inequalities and applying extrapolation methods on tent spaces $ T_{r}^{q}(\mathbb{R}_{+}^{n+1}) $, where these multilinear operators include multilinear Hardy–Littlewood maximal operator $ \mathcal{M} $, multilinear fractional maximal operator $ \mathcal{M}_{\alpha} $, multilinear Calderón–Zygmund operator $ \mathcal{T} $, and multilinear fractional integral operator $ \mathcal{I}_{\alpha} $. Therefore, the results of Auscher and Prisuelos–Arribas [Math. Z. 286 (2017), 1575–1604] are extended to the general case. |
format | Article |
id | doaj-art-6c17479d2e8c4c3997e54f909118e044 |
institution | Kabale University |
issn | 2836-3310 |
language | English |
publishDate | 2024-10-01 |
publisher | AIMS Press |
record_format | Article |
series | Communications in Analysis and Mechanics |
spelling | doaj-art-6c17479d2e8c4c3997e54f909118e0442025-01-23T07:55:55ZengAIMS PressCommunications in Analysis and Mechanics2836-33102024-10-0116470071610.3934/cam.2024031Some estimates of multilinear operators on tent spacesHeng Yang0Jiang Zhou1College of Mathematics and System Sciences, Xinjiang University, Urumqi 830017, ChinaCollege of Mathematics and System Sciences, Xinjiang University, Urumqi 830017, ChinaLet $ 0 < \alpha < mn $ and $ 0 < r, q < \infty $. In this paper, we obtain the boundedness of some multilinear operators by establishing pointwise inequalities and applying extrapolation methods on tent spaces $ T_{r}^{q}(\mathbb{R}_{+}^{n+1}) $, where these multilinear operators include multilinear Hardy–Littlewood maximal operator $ \mathcal{M} $, multilinear fractional maximal operator $ \mathcal{M}_{\alpha} $, multilinear Calderón–Zygmund operator $ \mathcal{T} $, and multilinear fractional integral operator $ \mathcal{I}_{\alpha} $. Therefore, the results of Auscher and Prisuelos–Arribas [Math. Z. 286 (2017), 1575–1604] are extended to the general case.https://www.aimspress.com/article/doi/10.3934/cam.2024031multilinear maximal operatormultilinear calderón–zygmund operatormultilinear fractional integral operatortent space |
spellingShingle | Heng Yang Jiang Zhou Some estimates of multilinear operators on tent spaces Communications in Analysis and Mechanics multilinear maximal operator multilinear calderón–zygmund operator multilinear fractional integral operator tent space |
title | Some estimates of multilinear operators on tent spaces |
title_full | Some estimates of multilinear operators on tent spaces |
title_fullStr | Some estimates of multilinear operators on tent spaces |
title_full_unstemmed | Some estimates of multilinear operators on tent spaces |
title_short | Some estimates of multilinear operators on tent spaces |
title_sort | some estimates of multilinear operators on tent spaces |
topic | multilinear maximal operator multilinear calderón–zygmund operator multilinear fractional integral operator tent space |
url | https://www.aimspress.com/article/doi/10.3934/cam.2024031 |
work_keys_str_mv | AT hengyang someestimatesofmultilinearoperatorsontentspaces AT jiangzhou someestimatesofmultilinearoperatorsontentspaces |