Some estimates of multilinear operators on tent spaces

Let $ 0 < \alpha < mn $ and $ 0 < r, q < \infty $. In this paper, we obtain the boundedness of some multilinear operators by establishing pointwise inequalities and applying extrapolation methods on tent spaces $ T_{r}^{q}(\mathbb{R}_{+}^{n+1}) $, where these multilinear operators includ...

Full description

Saved in:
Bibliographic Details
Main Authors: Heng Yang, Jiang Zhou
Format: Article
Language:English
Published: AIMS Press 2024-10-01
Series:Communications in Analysis and Mechanics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/cam.2024031
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832590749481304064
author Heng Yang
Jiang Zhou
author_facet Heng Yang
Jiang Zhou
author_sort Heng Yang
collection DOAJ
description Let $ 0 < \alpha < mn $ and $ 0 < r, q < \infty $. In this paper, we obtain the boundedness of some multilinear operators by establishing pointwise inequalities and applying extrapolation methods on tent spaces $ T_{r}^{q}(\mathbb{R}_{+}^{n+1}) $, where these multilinear operators include multilinear Hardy–Littlewood maximal operator $ \mathcal{M} $, multilinear fractional maximal operator $ \mathcal{M}_{\alpha} $, multilinear Calderón–Zygmund operator $ \mathcal{T} $, and multilinear fractional integral operator $ \mathcal{I}_{\alpha} $. Therefore, the results of Auscher and Prisuelos–Arribas [Math. Z. 286 (2017), 1575–1604] are extended to the general case.
format Article
id doaj-art-6c17479d2e8c4c3997e54f909118e044
institution Kabale University
issn 2836-3310
language English
publishDate 2024-10-01
publisher AIMS Press
record_format Article
series Communications in Analysis and Mechanics
spelling doaj-art-6c17479d2e8c4c3997e54f909118e0442025-01-23T07:55:55ZengAIMS PressCommunications in Analysis and Mechanics2836-33102024-10-0116470071610.3934/cam.2024031Some estimates of multilinear operators on tent spacesHeng Yang0Jiang Zhou1College of Mathematics and System Sciences, Xinjiang University, Urumqi 830017, ChinaCollege of Mathematics and System Sciences, Xinjiang University, Urumqi 830017, ChinaLet $ 0 < \alpha < mn $ and $ 0 < r, q < \infty $. In this paper, we obtain the boundedness of some multilinear operators by establishing pointwise inequalities and applying extrapolation methods on tent spaces $ T_{r}^{q}(\mathbb{R}_{+}^{n+1}) $, where these multilinear operators include multilinear Hardy–Littlewood maximal operator $ \mathcal{M} $, multilinear fractional maximal operator $ \mathcal{M}_{\alpha} $, multilinear Calderón–Zygmund operator $ \mathcal{T} $, and multilinear fractional integral operator $ \mathcal{I}_{\alpha} $. Therefore, the results of Auscher and Prisuelos–Arribas [Math. Z. 286 (2017), 1575–1604] are extended to the general case.https://www.aimspress.com/article/doi/10.3934/cam.2024031multilinear maximal operatormultilinear calderón–zygmund operatormultilinear fractional integral operatortent space
spellingShingle Heng Yang
Jiang Zhou
Some estimates of multilinear operators on tent spaces
Communications in Analysis and Mechanics
multilinear maximal operator
multilinear calderón–zygmund operator
multilinear fractional integral operator
tent space
title Some estimates of multilinear operators on tent spaces
title_full Some estimates of multilinear operators on tent spaces
title_fullStr Some estimates of multilinear operators on tent spaces
title_full_unstemmed Some estimates of multilinear operators on tent spaces
title_short Some estimates of multilinear operators on tent spaces
title_sort some estimates of multilinear operators on tent spaces
topic multilinear maximal operator
multilinear calderón–zygmund operator
multilinear fractional integral operator
tent space
url https://www.aimspress.com/article/doi/10.3934/cam.2024031
work_keys_str_mv AT hengyang someestimatesofmultilinearoperatorsontentspaces
AT jiangzhou someestimatesofmultilinearoperatorsontentspaces