Steady-State Visually Evoked Magnetic Signal Classification and BCI Evaluation Based on a Convolutional Neural Network
The steady-state visually evoked magnetic field (SSVEF) is a promising modality in brain-computer interference (BCI), which has the advantages of being non-invasive and non-contact. The combination of optically pumped magnetometers (OPM) and artificial intelligence technology makes SSVEF measurement...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IEEE
2025-01-01
|
| Series: | IEEE Access |
| Subjects: | |
| Online Access: | https://ieeexplore.ieee.org/document/10818692/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The steady-state visually evoked magnetic field (SSVEF) is a promising modality in brain-computer interference (BCI), which has the advantages of being non-invasive and non-contact. The combination of optically pumped magnetometers (OPM) and artificial intelligence technology makes SSVEF measurements more portable, accurate, and cost-effective. This paper examines the distribution of the human brain visually evoked magnetic field experimentally and then presents an SSVEF measurement system based on an OPM. A three-block temporal convolutional neural network (3B-TCN) is developed to classify brain magnetic signals. A data augmentation method based on statistical analysis of SSVEF signals is proposed, which generates 30,000 sets of data to train the 3B-TCN. The SSVEF signal classification accuracies of the 3B-TCN network are 96.61%, 92.36%, and 86.75% for 10 s, 5 s, and 2 s time length data, respectively. The impact of visually fatigued states on BCI is studied. The accuracy of controlling the character in the game is above 90% when the subjects are in a normal state, but it decreases considerably when the subjects are visually fatigued. The experimental results demonstrate the feasibility of realizing BCI using an OPM sensor and a convolutional neural network. |
|---|---|
| ISSN: | 2169-3536 |