Einstein–Gauss–Bonnet–Myrzakulov gravity from R + F(T,G): Numerical insights and torsion–Gauss–Bonnet dynamics in Weitzenböck spacetime
The study of modified gravity models has garnered significant attention because of their potential to provide alternative explanations for cosmological phenomena, such as the accelerated expansion of the universe and the nature of dark energy. One such model, the Einstein–Gauss–Bonnet–Myrzakulov R+F...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-08-01
|
| Series: | Nuclear Physics B |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S0550321325001750 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The study of modified gravity models has garnered significant attention because of their potential to provide alternative explanations for cosmological phenomena, such as the accelerated expansion of the universe and the nature of dark energy. One such model, the Einstein–Gauss–Bonnet–Myrzakulov R+F(T,G) gravity (EGBMG), which incorporates the curvature R, torsion T, and the Gauss-Bonnet term G, offers a promising framework to explore the dynamics of the universe and its evolution. This paper delves into the theoretical and observational implications of the EGBMG model, focusing on its ability to address long-standing challenges in cosmology, including the evolution of dark energy and the transition from early-time inflationary behavior to late-time acceleration. We review recent advancements in the model, including its compatibility with observational data and its ability to provide new insights into cosmic acceleration. Through a combination of theoretical models, dynamical systems analysis, and cosmological diagnostics, we demonstrate the robustness of the EGBMG framework in explaining the large-scale structure of the universe and its accelerated expansion. This paper serves as a step toward further exploring the potential of this model to understand the fundamental forces driving the cosmos and its consistency with modern observational constraints in Weitzenböck spacetime. |
|---|---|
| ISSN: | 0550-3213 |