Theoretical State and Time-Varying Parameter Estimation for a Susceptible, Infected, Hospitalized, and Immunized Epidemic Model Based on New Hospital Admission and Death Data

The transmission rate (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math>&l...

Full description

Saved in:
Bibliographic Details
Main Authors: Carmen Legarreta, Manuel De la Sen, Santiago Alonso-Quesada
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/4/1940
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The transmission rate (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula>) plays a crucial role in disease spread, making its measurement essential for effective control. However, existing techniques for its estimation are impractical as they rely on typically unavailable data. To address this, a prior analysis of the most frequently reported data during the Coronavirus Disease 2019 (COVID-19) pandemic has been carried out, namely the number of new hospital admissions (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>y</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>) and deaths (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>y</mi><mn>2</mn></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>). Based on this analysis, an SIHR epidemic model is presented, where <i>S</i>, <i>I</i>, <i>H</i>, and <i>R</i> represent susceptible, infected, hospitalized, and immunized subpopulations, respectively, and various observers tailored to the available data are proposed. Assuming both <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>y</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>y</mi><mn>2</mn></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> are available, an exponential observer has been designed for the state estimation, from which <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula> is obtained. If only <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>y</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is available, a combination of output injection and output diffeomorphism is employed to transform the nonlinear system into its observer canonical form, enabling the design of an adaptive observer for estimating both the states and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula>. By considering only <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>y</mi><mn>2</mn></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, an explicit equation has been obtained to estimate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>y</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, enabling the application of the previously developed methods. These approaches have been validated through a theoretical framework and numerical simulations; the first and third methods successfully estimate the unknown states and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula> with high accuracy. The second method yields a bounded region where the true value is expected to lie.
ISSN:2076-3417