CRISPR/cas9 Allows for the Quick Improvement of Tomato Firmness Breeding

Fruit firmness is crucial for storability, making cultivating varieties with higher firmness a key target in tomato breeding. In recent years, tomato varieties primarily rely on hybridizing ripening mutants to produce F<sub>1</sub> hybrids to enhance firmness. However, the undesirable tr...

Full description

Saved in:
Bibliographic Details
Main Authors: Qihong Yang, Liangyu Cai, Mila Wang, Guiyun Gan, Weiliu Li, Wenjia Li, Yaqin Jiang, Qi Yuan, Chunchun Qin, Chuying Yu, Yikui Wang
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Current Issues in Molecular Biology
Subjects:
Online Access:https://www.mdpi.com/1467-3045/47/1/9
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fruit firmness is crucial for storability, making cultivating varieties with higher firmness a key target in tomato breeding. In recent years, tomato varieties primarily rely on hybridizing ripening mutants to produce F<sub>1</sub> hybrids to enhance firmness. However, the undesirable traits introduced by these mutants often lead to a decline in the quality of the varieties. CRISPR/Cas9 has emerged as a crucial tool in accelerating plant breeding and improving specific target traits as technology iterates. In this study, we used a CRISPR/Cas9 system to simultaneously knock out two genes, <i>FIS1</i> and <i>PL</i>, which negatively regulate firmness in tomato. We generated single and double gene knockout mutants utilizing the tomato genetic transformation system. The fruit firmness of all knockout mutants exhibited a significant enhancement, with the most pronounced improvement observed in the double mutant. Furthermore, we assessed other quality-related traits of the mutants; our results indicated that the fruit quality characteristics of the gene-edited lines remained statistically comparable to those of the wild type. This approach enabled us to create transgenic-free mutants with diverse genotypes across fewer generations, facilitating rapid improvements in tomato firmness. This study offers significant insights into molecular design breeding strategies for tomato.
ISSN:1467-3037
1467-3045