Observation of higher-order time-dislocation topological modes
Abstract Topological dislocation modes resulting from the interplay between spatial dislocations and momentum-space topology have recently attracted significant interest. Here, we theoretically and experimentally demonstrate time-dislocation topological modes which are induced by the interplay betwe...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-02-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-56717-w |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Topological dislocation modes resulting from the interplay between spatial dislocations and momentum-space topology have recently attracted significant interest. Here, we theoretically and experimentally demonstrate time-dislocation topological modes which are induced by the interplay between temporal dislocations and Floquet-band topology. By utilizing an extra physical dimension to represent the frequency-space lattice, we implement a two-dimensional Floquet higher-order topological phase and observe time-dislocation induced π-mode topological corner modes in a three-dimensional circuit metamaterial. Intriguingly, the realized time-dislocation topological modes exhibit spatial localization at the temporal dislocation, despite homogeneous in-plane lattice couplings across it. Our study opens a new avenue to explore the topological phenomena enabled by the interplay between real-space, time-space and momentum-space topology. |
|---|---|
| ISSN: | 2041-1723 |