Biomimetic Design for Enhanced Thermal Performance of Vapor Chambers
Vapor chambers (VCs) are efficient heat spreaders that rely on wicks to realize the circulation of a phase-changing working liquid and can be used to address heat dissipation problems in electronic devices, aerospace, and satellite equipment. In this study, we propose a novel vapor chamber with biom...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Energies |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1996-1073/18/5/1250 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Vapor chambers (VCs) are efficient heat spreaders that rely on wicks to realize the circulation of a phase-changing working liquid and can be used to address heat dissipation problems in electronic devices, aerospace, and satellite equipment. In this study, we propose a novel vapor chamber with biomimetic wick structures and composite lattice supports to enhance the thermal management and load-bearing performance of vapor chambers. The experiments and COMSOL multiphysics 6.1 simulation results indicate that the biomimetic design can improve the startup performance, thermal management, and load-bearing performance of the VC. Compared to conventional VCs, at a filling ratio of 20% the biomimetic VC reduces the time to reach a steady state by 11.7% and improves the uniformity of temperature by 7.74%. This study provides a novel design concept for VCs and verifies the operating performance of vapor in high heat flux density cases, providing a reference for the innovative design and enhanced heat transfer of phase change-based thermal management equipment. |
|---|---|
| ISSN: | 1996-1073 |